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SMOOTHLY EMBEDDED RATIONAL HOMOLOGY BALLS

Heesang Park, Jongil Park, and Dongsoo Shin

Abstract. In this paper we prove the existence of rational homology

balls smoothly embedded in regular neighborhoods of certain linear chains

of smooth 2-spheres by using techniques from minimal model program for
3-dimensional complex algebraic variety.

1. Introduction

A rational homology ball Bp,q (1 ≤ q < p, (p, q) = 1) is a smooth 4-manifold
with the lens space L(p2, pq − 1) as its boundary such that H∗(Bp,q;Q) ∼=
H∗(B

4;Q). It appears in a rational blow-down surgery (which was developed
by Fintushel–Stern [2] and generalized by J. Park [14]): If Cp,q is a regular
neighborhood of the linear chain of smooth 2-spheres whose dual graph is

(1.1)
−b1 −b2 −br−1 −br

with
p2

pq − 1
= b1 −

1

b2 −
1

b3 −
1

. . . −
1

br
for bi ≥ 2 (1 ≤ i ≤ r) in a smooth 4-manifold X, then one may cut Cp,q from
X and paste Bp,q along the boundary L(p2, pq − 1) so that one obtains a new
smooth 4-manifold Z = (X − Cp,q) ∪L(p2,pq−1) Bp,q.

A rational homology ball Bp,q itself can be also regarded as the Milnor fiber
of a cyclic quotient singularity of type 1

p2 (1, pq−1) (See Section 2.3 for details).

So one may interpret a rational blow-down surgery as a global smoothing of
a singular complex surface X with a cyclic quotient singularity o ∈ X of type
1
p2 (1, pq − 1) under certain mild conditions. Explicitly, if there is no local-to-

global obstruction to deform X, i.e., if the obstruction H2(X, TX) vanishes,
then there is a Q-Gorenstein smoothing π : X → ∆ of X over a small disk
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∆ = {t ∈ C : |t| < ε} that is induced from a local Q-Gorenstein smoothing of
the singularity o.

The rational blow-down surgery was very successful for constructing small
exotic 4-manifolds (cf. [15], [16], [18]), and its counter part, Q-Gorenstein
smoothings, in the category of complex surface was also very useful for con-
structing complex surfaces of general type with small geometric genus (cf. [7],
[8], [9], [10], [11], [12], [13]).

In this way, one can easily produce a smooth 4-manifold Z, where Bp,q is
smoothly embedded, by performing a rational blow-down surgery to a given
4-manifold X containing a configuration Cp,q. However, conversely, detecting
Bp,q in a given 4-manifold Z is difficult unless one knows a priori that Z is
obtained by performing a rational blow-down surgery.

In this paper we show that, for any relatively prime integers p, q with 1 ≤
q < p, there is a smoothly embedded rational homology ball Bp,q in a regular
neighborhood of a certain linear chain of smooth 2-spheres corresponding to
p2/(pq − 1), which is called the δ-half linear chain (See Definition 2.6). That
is,

Main Theorem (Corollary 4.2). Suppose Z is a smooth 4-manifold which
contains the δ-half linear chain corresponding to p2/(pq − 1) with 1 ≤ q < p.
Then there is a smoothly embedded rational homology ball Bp,q in Z.

Hence one can detect a smoothly embedded Bp,q in a given smooth 4-
manifold Z if it contains the δ-half linear chain corresponding to p2/(pq − 1),
which is a generalization of the recent result of Khodorovskiy [4] (Corollary 4.3
and Proposition 4.4). In particular, we conclude that, in a regular neighbor-
hood of a smooth (−4)-sphere, there is a rational homology ball Bn,1 for any
odd n ≥ 3; Proposition 4.4. The main tools of the proof are techniques from ex-
plicit semi-stable minimal model program for 3-dimensional complex algebraic
variety.

This paper is organized as follows: In Section 2 we briefly recall some basic
notions related to Hirzebruch–Jung continued fractions and rational homology
balls. And then we introduce techniques from minimal model program of 3-fold
and we prove the main technical result in Section 3. The proofs of the existence
of rational homology balls are given in Section 4. Finally, we investigate the
possibility of rational blow-up surgery using the embedded rational homology
balls in Section 5.
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2. Linear chains of projective lines and rational homology balls

We briefly recall some relevant notions of Hirzebruch–Jung continued frac-
tions and linear chains of 2-spheres related to rational homology balls.

2.1. Hirzebruch–Jung continued fractions

The Hirzebruch–Jung continued fraction [b1, . . . , br] for bi ∈ N and bi ≥ 1
(1 ≤ i ≤ r) is defined recursively as follows: [br] = br and

[bi, . . . , br] = bi −
1

[bi+1, . . . , br]

for i < r. For any integers n, a ∈ N with 1 ≤ a < n, it is known that n/a is
uniquely represented as [b1, . . . , br] for some bi ∈ N with bi ≥ 2 (i = 1, . . . , r).
Usually, the Hirzebruch–Jung continued fraction [b1, . . . , br] represents a linear
chain of 2-spheres whose dual graph is given by

−b1 −b2 −br−1 −br

For n/a = [b1, . . . , br] with bi ≥ 2, we call the linear chain above by the linear
chain corresponding to n/a.

Two Hirzebruch–Jung continued fractions n/a = [b1, . . . , br] and n/(n−a) =
[a1, . . . , ae] are dual to each other. That is, one can compute aj ’s for n/(n−a)
via bi’s for n/a, and vice versa, by Riemenschneider’s dot diagram [17]: Place
in the i-th row bi− 1 dots, the first one under the last one of the (i− 1)-st row;
then, the column j contains aj − 1 dots, and vice versa. Furthermore, we have

[b1, . . . , br, 1, ae, . . . , a1] = 0,

which implies that the linear chain of 2-spheres

−b1 −b2 −br−1 −br −1 −ae −a2 −a1

is blown down to
0

.

Example 2.1. For n = 49 and a = 34, we have

n

a
= [2, 2, 5, 4] and

n

n− a
= [4, 2, 2, 3, 2, 2].

The linear chain corresponding to 49/34 is

−2 −2 −5 −4
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and its Riemenschneider’s dot diagram is the following:

2.2. Linear chains of class W

For simplicity, we define a special linear chain whose boundary bounds a
rational homology ball.

Definition 2.2. A linear chain of class W is a linear chain of 2-spheres corre-
sponding to

p2

pq − 1
= [b1, . . . , br]

with 1 ≤ q < p and (p, q) = 1.

Every linear chain of class W is obtained by the following recursive algo-
rithm:

Proposition 2.3 (Wahl [21]).

(1) The linear chain
−4

is of class W .

(2) If the linear chain
−b1 −br

is of class W , then so are

−2 −b1 −br−1 −br − 1
and

−b1 − 1 −b2 −br −2

(3) Every linear chain of class W can be obtained by starting with
−4

and
iterating the steps described in (2).

Observation 2.4. The Riemenschneider’s dot diagram for a linear chain of
class W is symmetric to a special dot in the diagram which will be defined in
the proof.

Proof. The Riemenschneider’s diagram for
−4

is

δ

which is symmetric to the dot decorated by δ. And the step (2) in Proposi-
tion 2.3 above can be described in the view of Riemenschneider’s dot diagram
as follows: The procedure

from
−b1 −br

to
−2 −b1 −br−1 −br − 1

can be understood as adding a dot to the right of the last dot of the final row and
adding a dot over the first dot of the first row in the given Riemenschneider’s
dot diagram. Also the procedure
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from
−b1 −br

to
−b1 − 1 −b2 −br −2

is just equivalent to adding a dot to the left of the first dot of the top row
and a dot under the last dot of the final row. Therefore the Riemenschneider’s
diagram of a linear chain of class W is still symmetric to the dot decorated by
δ. �

Example 2.5 (Continued from Example 2.1). The Riemenschneider’s dot di-
agram for 49/34 is symmetric to the dot decorated by δ:

δ

Definition 2.6. The δ-position (i(δ), j(δ)) of a linear chain
−b1 −br

of
class W is the i(δ)-th row and the j(δ)-th column containing the center of
the symmetry. The δ-half linear chain of a linear chain of class W with the
δ-position (i(δ), j(δ)) is a linear chain

−b1 −bi(δ)−1 −b
′
i(δ)

whose Riemenschneider’s dot diagram is obtained by choosing from the first
row to the i(δ)-th row and from the first column to the j(δ)-th column of the
original Riemenschneider’s dot diagram.

Example 2.7 (Continued from Example 2.1). The δ-position of the linear
chain corresponding to 49/34 is (3, 3). So the δ-half linear chain corresponding
to 49/34 is

−2 −2 −4

whose Riemenschneider’s dot diagram is obtained as follows:

δ

2.3. Rational homology balls corresponding to linear chains of class
W

As mentioned in the introduction, the boundary of the 4-manifold Cp,q ob-
tained by plumbing the linear chain of class W corresponding to p2/(pq − 1)
with 1 ≤ q < p is the Lens space L(p2, pq − 1), which also bounds a rational
homology ball Bp,q due to Casson–Harer [1].
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On the other hand, one may interpret Bp,q as a Milnor fiber of a cyclic
quotient singularity of type 1

p2 (1, pq − 1). We briefly recall some relevant no-

tions and results. A cyclic quotient singularity of type 1
n (1, a) for 1 ≤ a < n

with (n, a) = 1 is a quotient surface singularity C2/µn, where µn is a cyclic
multiplicative group generated by a n-th root of unity ζ acting on C2 by
ζ · (x, y) = (ζx, ζay). Then the dual graph of the minimal resolution of a cyclic
quotient singularity of type 1

n (1, a) is that of the linear chain corresponding
to n/a. A smoothing π : (X , 0) → ∆ of a normal surface singularity (X, 0) is
a proper flat map from a 3-dimensional isolated singularity (X , 0) to a small
disk ∆ = {t ∈ C : |t| < ε} such that (π−1(0), 0) ∼= (X, 0) and π−1(t) is smooth
for all t 6= 0. The Milnor fiber M of a smoothing π : (X , 0) → ∆ is roughly
speaking a nearby fiber of the central fiber π−1(0). According to a general
theory of Milnor fibers, M is a compact 4-manifold whose boundary is the link
L of the singularity (X, 0), where the link L = X ∩ ∂B of (X, 0) is defined by
a boundary of a small neighborhood B of the singularity.

In case of a cyclic quotient singularity of type 1
n (1, a), the link L is the lens

space L(n, a). Furthermore, for a cyclic quotient singularity of type 1
p2 (1, pq−1)

with 1 ≤ q < p, there is a smoothing π : (X , 0) → ∆ (so-called Q-Gorenstein
smoothing) whose Milnor fiber is a rational homology ball Bp,q.

Remark 2.8. Suppose that X̃ is a smooth complex surface containing the linear
chain of complex rational curves whose dual graph is given as in (1.1). Then,

since X̃ contains a configuration Cp,q, one can perform a rational blow-down
surgery along Cp,q to obtain a new smooth 4-manifold, say Z. On the other
hand, let X be a singular complex surface with a singularity o ∈ X obtained
by contracting the linear chain (1.1) to o. Then one may interpret a rational

blow-down surgery on X̃ as a global smoothing of X if there is no local-to-
global obstruction to deformation. That is, if π : X → ∆ is a smoothing of X
induced by a local smoothing of o ∈ X, then its general fiber π−1(t) (t 6= 0) is
diffeomorphic to Z.

Definition 2.9. A Wahl singularity is a cyclic quotient singularity which ad-
mits a smoothing whose Milnor fiber is a rational homology ball.

Proposition 2.10 (cf. Kollár–Shepherd-Barron [6]). A cyclic quotient singu-
larity of type 1

n (1, a) is a Wahl singularity if and only if n = p2 and a = pq− 1
for some 1 ≤ q < p.

Corollary 2.11. The dual graph of the minimal resolution of a Wahl singu-
larity is a linear chain of class W given in Proposition 2.3.

3. Flips in minimal model program

We review some basics of divisorial contractions and flips in minimal model
program from Kollár–Mori [5] and HTU [3]



SMOOTHLY EMBEDDED RATIONAL HOMOLOGY BALLS 1299

Definition 3.1. A three dimensional extremal neighborhood is a proper bira-
tional morphism f : (C ⊂ W)→ (Q ∈ Z) satisfying the following properties:

(1) The canonical class KW is Q-Cartier and W has only terminal singu-
larities;

(2) Z is normal with a distinguished point Q ∈ Z;
(3) C = f−1(Q) is an irreducible curve;
(4) KW · C < 0.

If the exceptional set of f is C, then the extremal neighborhood is said to be
flipping. On the other hand, if it is not flipping, then the exceptional set of f
is of dimension 2. In this case we call it a divisorial extremal neighborhood.

An extremal neighborhood that we are concerned with is the following:

Definition 3.2. Let f : W → Z be a partial resolution of a two dimensional
cyclic quotient singularity germ (Q ∈ Z) such that f−1(Q) = C is a smooth
rational curve with one Wahl singularity of W on C. Suppose that KW ·C < 0.
Let W → ∆ be a Q-Gorenstein smoothing of W and let Z → ∆ be the
corresponding blown-down deformation of Z; Wahl [20]. The induced birational
morphism (C ⊂ W) → (Q ∈ Z) is called an extremal neighborhood of type
mk1A.

Example 3.3. Let p2/(pq− 1) = [b1, . . . , br] for 1 ≤ q < p. Let U be a regular
neighborhood of a linear chain of 2-spheres whose dual graph is given as follows:

−b1 −b2 −br−1 −br −1

C

Let U →W be the contraction of the linear chain corresponding to p2/(pq−1)
in U to a Wahl singularity Q′ ∈ W of type 1

p2 (1, pq − 1). Denote again by

C ⊂W the image of C ⊂ U . Let U → Z be the contraction of the whole above
linear chain to a quotient singularity Q ∈ Z. Let W → ∆ be a deformation
of W induced by the Q-Gorenstein smoothing of the singularity Q′ and let Z
be the blow-down deformation of W → ∆. Then it is not difficult to show
that (C ⊂ W) → (Q ∈ Z) is a flipping extremal neighborhood of type mk1A;
cf. HTU [3].

At first the divisorial contraction for an extremal neighborhood of type mk1A
is just a blowing down of (−1)-curves:

Proposition 3.4 (cf. Urzúa [19, Proposition 2.8]). If (C ⊂ W) → (Q ∈ Z)
is a divisorial extremal neighborhood of type mk1A, then (Q ∈ Z) is a Wahl
singularity. The divisorial contraction W → Z induces the blowing down of a
(−1)-curve between the smooth fibers of W → ∆ and Z → ∆.

In case of a flipping extremal neighborhood, KZ is not Q-Cartier. So we
modify it:
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Definition 3.5. The flip of a flipping extremal neighborhood f : (C ⊂ W)→
(Q ∈ Z) (or, if no confusion, the flip of W) is a proper birational morphism
f+ : (C+ ⊂ W+) → (Q ∈ Z) where W+ is normal with only terminal sin-
gularities such that the exceptional set of f+ is C+, KW+ is Q-Cartier, and
f+-ample.

The flipped surface (C+ ⊂W+) can be computed by a special partial reso-
lution of (Q ∈ Z).

Definition 3.6 (HTU [3, §4]). An extremal P -resolution of a two dimensional
cyclic quotient singularity germ (Q ∈ Z) is a partial resolution f+ : W+ → Z
such that C+ = (f+)−1(Q) is a smooth rational curve and W+ has only at
most two Wahl singularities and KW+ is ample relative to f+.

Proposition 3.7 (Kollár–Mori [5]). Suppose that (C ⊂ W) → (Q ∈ Z) is
a flipping extremal neighborhood of type mk1A. Let (C ⊂ W ) → (Q ∈ Z) be
the contraction of C between the central fibers W and Z. Then there exists
an extremal P -resolution (C+ ⊂ W+) → (Q ∈ Z) such that the flip (C+ ⊂
W+)→ (Q ∈ Z) is obtained by the blown-down deformation of a Q-Gorenstein
smoothing of W+. That is, we have the commutative diagram

(C ⊂W ) (C+ ⊂W +)

(Q ∈Z )

(0 ∈ ∆)

f lip

which is restricted to the central fibers as follows:

(C ⊂W ) (C+ ⊂W+)

(Q ∈ Z)

In HTU [3, §4], they described explicitly the numerical data of the central
fibers (C ⊂ W ) → (Q ∈ Z) and (C+ ⊂ W+) of an extremal neighborhood of
type mk1A. For details, refer HTU [3, §4].

At first, the data for (C ⊂W )→ (Q ∈ Z) is given as follows: Let (C ⊂W )
be the central fiber of an extremal neighborhood of type mk1A with a Wahl
singularity of type 1

p2 (1, pq − 1) lying on C. Let

p2

pq − 1
= [b1, . . . , br]

and let E1, . . . , Er be the exceptional curves of the minimal resolution W̃ of
W with Ej · Ej = −bj for all j. Since KW · C < 0 and C · C < 0, the strict
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transform of C, denoted again by C, is a (−1)-curve intersecting only one
exceptional curve, say Ei, at one point. We denote this data by

(b1, . . . , bi, . . . , br).

Then (Q ∈ Z) is a cyclic quotient singularity of type 1
∆ (1,Ω) where

(3.1)
∆

Ω
= [b1, . . . , bi − 1, . . . , br].

On the other hand, the birational map (C+ ⊂W+)→ (Q ∈ Z) for a flipping
extremal neighborhood of type mk1A which appears frequently in calculation
in this paper is described as follows:

Proposition 3.8 (Urzúa [19]). Let (b1, . . . , br−1, br) be a data of a flipping
extremal neighborhood of type mk1A. Suppose that i is the largest index sat-
isfying bi ≥ 3 and bj = 2 for all i < j ≤ r. Then the image of E1 in
W+ is the curve C+ with the Wahl singularity of type 1

m2 (1,ma − 1) where
m2

ma−1 = [b2, . . . , bi − 1].

Example 3.9 (Continued from Example 2.1). Consider a flipping extremal
neighborhood of type mk1A whose data is given by [2, 2, 5, 4], that is,

−2 −2 −5 −4 −1

C

where the linear chain of the vertices � is contracted to the Wahl singular-
ity of type 1

49 (1, 34) on (C ⊂ W ). According to Proposition 3.8 above, the
Hirzebruch–Jung continued fraction for the Wahl singularity on (C+ ⊂ W+)
is [2, 5, 3], which can be represented as follows:

−2

C+

−2 −5 −3

One can interpret the above flip of a flipping extremal neighborhood of type
mk1A whose data is (b1, . . . , br−1, br) via Riemenschneider’s dot diagram as
follows:

Observation 3.10. From the Riemenschneider’s dot diagram associated to
[b1, . . . , br], we first delete its last column so that we get a modified Riemen-
schneider’s dot diagram and we then keep the first column of the modified
Riemenschneider’s dot diagram for representing C+. Then the remained part
is the Riemenschneider’s dot diagram for [b2, . . . , bi − 1], which corresponds to
the Wahl singularity on (C+ ⊂W+).
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Example 3.11 (Continued from Example 3.9). The Riemenschneider’s dot
diagram of the Wahl singularity on (C+ ⊂W+) is the following:

δ

C+

3.1. Flips and δ-half linear chains

Suppose that p2/(pq − 1) = [b1, . . . , br] and its dual p2/(p2 − pq + 1) =
[a1, . . . , ae] for 1 ≤ q < p. Let (i(δ), j(δ)) be the δ-position of the linear chain
corresponding to p2/(pq−1). Let U be a regular neighborhood of a linear chain
of 2-spheres whose dual graph is given as follows:

(3.2)

−b1

B1

−b2

B2

−br−1

Br−1

−br

Br

−1

C

−ae

Ae

−aj(δ)+2

Aj(δ)+2

Let U →W be the contraction of the linear chain corresponding to p2/(pq−1)
in U to a Wahl singularity Q′ ∈ W of type 1

p2 (1, pq − 1). Denote again by

C ⊂W the image of C ⊂ U . Let U → Z be the contraction of the linear chain

−b1

B1

−b2

B2

−br−1

Br−1

−br

Br

−1

C

to a quotient singularity Q ∈ Z. LetW → ∆ be a deformation of W induced by
the Q-Gorenstein smoothing of the singularity Q′ and let Z be the blown-down
deformation of W → ∆. Then (C ⊂ W) → (Q ∈ Z) is a flipping extremal
neighborhood of type mk1A.

Corollary 3.12. Applying flips described in Proposition 3.8 repeatedly to (C ⊂
W) → (Q ∈ Z), we have a deformation Y → ∆ such that all of the fibers are
smooth. In particular, the central fiber Y0 of Y → ∆ is a regular neighborhood
of the δ-half linear chain associated to p2/(pq − 1).

Proof. Suppose that i is the largest index satisfying bi ≥ 3 and bj = 2 for all
i < j ≤ r. Then, by Riemenschneider’s dot diagram, we have ae = r− i+ 2. If
we apply a flip once to (C ⊂ W), then we have to blow down (r− i+ 1)-times
the (−1)-curves starting from C ⊂ U . Then all curves Bj for j > i are killed
during the blowing-downs but only Ae in the dual part is transformed into the
new (−1)-curve A′e, while we keep B1 for C+. Then the resulting linear chain
is as follows:

(3.3)

−b1

C+

−b2

B2

−bi−1

Bi−1

−bi + 1

B′i

−1

A′e

−ae−1

Ae−1

−aj(δ)+2

Aj(δ)+2
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where the linear chain of the rectangles � is contracted to a new Wahl singu-
larity on C+.

The new (−1)-curve A′e is again a flipping curve. So we can continue to flip.
But this process can be continued only until the (j(δ)+1)-th column is deleted
because of the symmetry of Riemenschneider’s dot diagram. Then after the
final flip, the remained linear chain is the following:

−b1

B1

−b2

B2

−bi(δ)−1

Bi(δ)−1

−b′i(δ)

B′i(δ)

Therefore we get a deformation Y → ∆ such that its general fiber contains the
δ-half linear chain associated to p2/(pq − 1). Furthermore, in the view of U ,
a flip is just blow-downs of (−1)-curves. Therefore, in each step, the minimal
resolution of the central fiber of the flipped deformation (C+ ⊂ W+) is a
regular neighborhood of the resulting linear chain in (3.3). Hence the central
fiber Y0 is just a regular neighborhood of the δ-half linear chain. �

Corollary 3.13. By blowing up appropriately the δ-linear chain corresponding
to p2/(pq − 1) with 1 ≤ q < p, we obtain the linear chain in (3.2).

Proof. In the level of minimal resolutions, the flips in the proof of Corollary 3.12
above is just a sequence of blowing-downs. So the proof above says that one
can obtain the δ-half linear chain from the linear chain in (3.2) by blowing
down appropriately; hence, the assertion follows. �

Example 3.14 (Continued from Examples 3.9 and 3.11). We apply Corol-
lary 3.12 above to the linear chain associated to 49/34 as in Figure 1. Then we
get a deformation Y → ∆ such that all of its fibers are smooth and the central

fiber is a regular neighborhood of the δ-half linear chain
−2 −2 −4

. In the
view of Riemenschneider’s dot diagram, the sequence of flips can be visualized
as in Figure 2.

4. Embedded rational homology balls

We finally prove the existence of embedded rational homology balls.

Theorem 4.1. Let V be a plumbing 4-manifold of the δ-half linear chain cor-
responding to p2/(pq − 1) with 1 ≤ q < p. Then there is an embedded rational
homology ball Bp,q in V .

Proof. Assume first that the δ-half linear chain consists of complex rational
curves CP1 and V is a complex surface. According to Corollary 3.13, by blowing
up appropriately in V , we have a regular neighborhood U of the linear chain

−b1

B1

−b2

B2

−br−1

Br−1

−br

Br

−1

C

−ae

Ae

−aj(δ)+2

Aj(δ)+2
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−2 −2 −5 −4 −1

C1

−2 −2

↓
−2

C+
1

−2 −5 −3 −1

C2

−2

↓
−2

C+
1

−2

C+
2

−5 −2 −1

C3

↓
−2

C+
1

−2

C+
2

−4

C+
3

Figure 1. A sequence of flips for Example 3.14

δ δ

C+
1

δ

C+
1

C+
2 δ

C+
1

C+
2

C+
3

Figure 2. Riemenschneider’s dot diagrams for Example 3.14

corresponding to p2/(pq − 1) in (3.2). Let U → W be the contraction of
the linear chain corresponding to p2/(pq − 1) to the Wahl singularity of type
1
p2 (1, pq − 1). We denote again by C ⊂ W the image C ⊂ U . Let W → ∆

is the deformation of W which is induced from the Q-Gorenstein smoothing
of the Wahl singularity of type 1

p2 (1, pq − 1). Therefore there is an embedded

rational homology ball Bp,q in every general fiber Wt (t 6= 0).
On the other hand, by Corollary 3.12 above, if applying flips appropriately,

there is a deformation Y → ∆ such that all of its fibers are smooth and the
central fiber Y0 is just the regular neighborhood V of the δ-half linear chain
corresponding to p2/(pq− 1). Furthermore, notice that a flip changes only the
central fiber of W → ∆. Therefore a general fiber Yt (t 6= 0) is isomorphic to
Wt; hence Yt also contains a rational homology ball Bp,q. Furthermore, since
every fiber is smooth, the deformation Y → ∆ is locally trivial as a fibration of
smooth differentiable 4-manifolds. So the central fiber Y0 is diffeomorphic to a
general fiber Yt (0 < t � ε). Hence there is an embedded rational homology
ball Bp,q in the central fiber Y0 = V .
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In general, suppose that a regular neighborhood V contains the δ-half lin-
ear chain consisting of smooth 2-spheres. Then one can take a complex sur-
face model VC containing the δ-half linear chain consisting of complex rational
curves such that VC is diffeomorphic to V . Then we can apply the argument
above to VC. �

Corollary 4.2. Suppose Z is a smooth 4-manifold which contains the δ-half
linear chain corresponding to p2/(pq − 1) with 1 ≤ q < p. Then there is a
smoothly embedded rational homology ball Bp,q in Z.

Notice that we can also obtain the main results in Khodorovskiy [4] as by-
products.

Corollary 4.3 (Khodorovskiy [4, Theorem 1.2]). Let V−n−1 be a regular neigh-
borhood of a smooth 2-sphere with self-intersection number −n− 1. Then there
is an embedded rational homology ball Bn,1 in V−n−1 for any n ≥ 2.

Proof. The linear graph corresponding to n2/(n− 1) is

−n− 2 −2 −2

n− 2

Therefore the δ-half linear chain corresponding to n2/(n− 1) is
−n− 1

. Then
the assertion follows from Theorem 4.1. �

Proposition 4.4 (Khodorovskiy [4, Theorem 1.3]). For any odd integer n ≥ 3,
there are embedded rational homology balls Bn,1 in a regular neighborhood V−4

of a smooth 2-sphere with self-intersection number −4. For any even integer

n ≥ 3, there is an embedding Bn,1 ↪→ B2,1]CP
2
.

Proof. As in the proof of Theorem 4.1 above, we may assume that the (−4)-
curve is a complex rational curve in a complex surface V−4. For any n ≥ 3, by
blowing up appropriately V−4, we get a regular neighborhood U of the following
linear chain of CP1’s:

−n− 2 −2 −2

−1 C

n− 2

Now we contract the linear chain corresponding to n2/(n− 1) in U so that we
get a singular surface W with a cyclic quotient singularity Q′ ∈ C ⊂W of type
1
n2 (1, n− 1). Let (C ⊂ W )→ (Q ∈ Z) be the contraction of C ⊂ W . Then Q

is a cyclic quotient singularity of type 1
4 (1, 1) because [n + 2, 1, 2, . . . , 2] = [4].

Let W → ∆ be a deformation of W induced by the Q-Gorenstein smoothing
of Q′ and let Z → ∆ be the blown-down deformation of W → ∆. Notice that
a general fiber Wt (t 6= 0) contains a rational homology ball Bn,1.
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Assume that n ≥ 3 is an odd integer. By computing as in Urzúa [19, §2.4],
one can show that (C ⊂ W)→ (Q ∈ Z) is a flipping extremal neighborhood of
type mk1A. So if we apply a flip to the curve C ⊂W , then, by Equation (3.1),
the resulting deformationW+ → ∆ has a central fiber W+

0 which is isomorphic
to V−4 because its extremal P -resolution is just the minimal resolution of Q
without any singularities. On the other hand, since the general fiber W+

t = Wt

(t 6= 0) contains a rational homology ball Bn,1 and W+
0 is diffeomorphic to

W+
t , there is an embedded rational homology ball Bn,1 in V−4.
Let n ≥ 3 be an even integer. Then (C ⊂ W) → (Q ∈ Z) is a divisorial

extremal neighborhood of type mk1A; cf. HTU [3], Urzúa [19]. That is, the
map Wt → Zt (t 6= 0) is a blow-down. On the other hand, Q is a cyclic quotient
surface singularity of type 1

4 (1, 1) and Z → ∆ is the smoothing of Q. So the
general fiber Zt is a rational homology ball B2,1, while Wt contains a rational

homology ball Bn,1. Therefore there is an embedding Bn,1 ↪→ B2,1]CP
2
. �

5. A rational blow-up surgery

Since a rational blow-down surgery was very successful for constructing many
interesting examples of 4-manifolds, it would be also an intriguing problem to
consider the converse surgery, that is, replacing a rational homology ball Bp,q
by the regular neighborhood Cp,q, which is called a rational blow-up surgery.

Let X be a regular neighborhood of the δ-half linear corresponding to
p2/(pq−1) and letBp,q be a rational homology ball embedded inX which is con-
structed in the proof of Theorem 4.1 above. Let Z = (X−Bp,q)∪L(p2,pq−1)Cp,q
be a smooth 4-manifold obtained by rationally blowing up of X, that is, by
replacing the rational homology ball Bp,q with a configuration Cp,q. Suppose

that X̃ is a regular neighborhood of the linear chain in (3.2) which is obtained
by blowing up appropriately X as in Corollary 3.13 above. Then we have

Proposition 5.1. Z is diffeomorphic to X̃.

Proof. Let X̂ be a singular complex surface obtained by contracting the linear

chain (1.1) in X̃ to the singular point x ∈ X̂. Let π : X̂ → ∆ be the smoothing

of X̂ induced by a local smoothing of x ∈ X̂. Then a general fiber X̂t = π−1(t)

(t 6= 0) contains a rational homology ball Bp,q and the procedure from X̃ to

X̂t is the rational blow-down surgery as we saw in Remark 2.8 above. That is,

X̂t is obtained from X̃ by rationally blowing down Cp,q.
On the other hand, according to the proof of Theorem 4.1 above, if we apply

flips appropriately to π : X̂ → ∆, we obtain a new deformation π′ : X̂
′
→ ∆

such that its central fiber π′−1(0) is changed to X but its general fiber is

still X̂t; so X is diffeomorphic to X̂t. But, if we rationally blow up X, or

equivalently, if we rationally blow up X̂t , then we get again X̃ as a resulting
smooth 4-manifold, which can be obtained from X by appropriate blowing-ups.
Therefore the assertion follows. �
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