DOI QR코드

DOI QR Code

Antioxidant, Liver Protective and Angiotensin I-converting Enzyme Inhibitory Activities of Old Laying Hen Hydrolysate in Crab Meat Analogue

  • Jin, Sang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Choi, Jung Seok (Swine Science and Technology Center, Gyeongnam National University of Science and Technology) ;
  • Choi, Yeung Joon (Department of Seafood Science and Technology, Gyeongsang National University) ;
  • Lee, Seung-Jae (Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Seung Yun (Department of Animal Science and Technology, Chung-Ang University) ;
  • Hur, Sun Jin (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2015.11.13
  • Accepted : 2016.02.19
  • Published : 2016.12.01

Abstract

The purpose of this study was to evaluate the antioxidative activities of Crab meat analogue prepared with protein hydrolysates obtained from mechanically deboned chicken meat (MDCM) from spent laying hens. 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) radical-scavenging activity was increased by adding MDCM hydrolysates during storage, and activity correlated with the concentration of DPPH added up to 6 weeks of storage. Hydroxyl radical-scavenging activity was increased in all analogues containing MDCM hydrolysates. At 0 days of storage, angiotensin I-converting enzyme (ACE)-inhibitory activity was increased by the addition of MDCM hydrolysates. Activity did not correlate after 6 weeks of storage, in which ACE-inhibitory activity was increased with low concentrations of MDCM hydrolysates, but no ACE-inhibitory activity was observed at higher concentrations. The liver-protecting activity of crab meat analogue was shown to be around 60% of the positive control; however, it was not significantly different among the samples during storage. These results support the use of MDCM as a source of health-promoting constituents in crab meat analogue.

Keywords

References

  1. Ahhmed, M. A., S. Kawahara, and M. Muguruma. 2009. Transglutaminate improves the textural and structural properties of chicken skeletal, smooth, and cardiac muscles. In: Proceeding of the 55th International Congress of Meat Science and Technology. Copenhagen, Denmark.
  2. Arihara, K., Y. Nakashima, T. Mukai, S. Ishikawa, and M. Itoh. 2001. Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Sci. 57:319-324. https://doi.org/10.1016/S0309-1740(00)00108-X
  3. Battaller, R. and D. A. Brenner. 2005. Liver fibrosis. J. Clin. Invest. 115:209-218. https://doi.org/10.1172/JCI24282
  4. Bhaskar, N., V. K. Modi, K. Govindaraju, C. Radha, and R. G. Lalitha. 2007. Utilization of meat industry by products: protein hydrolysate from sheep visceral mass. Bioresour. Technol. 98:388-394. https://doi.org/10.1016/j.biortech.2005.12.017
  5. Brand-Williams, W., M. E. Cuvelier, and C. Berest. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28:25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  6. Chen, G. T., L. Zhao, L. Y. Zhao, T. Cong, and S. F. Bao. 2007. In vitro study on antioxidant activities of peanut protein hydrolysate. J. Sci. Food Agric. 87:357-362. https://doi.org/10.1002/jsfa.2744
  7. Dong, S., M. Zeng, D. Wang, Z. Liu, Y. Zhao, and H. Yang. 2008. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem. 107:1485-1493. https://doi.org/10.1016/j.foodchem.2007.10.011
  8. Escudero, E., M. A. Sentandreu, K. Arihara, and F. Toldra. 2010. Angiotensin I-converting enzyme inhibitory peptides generated from in vivo gastrointestinal digestion of pork meat. J. Agric. Food Chem. 58:2895-2901. https://doi.org/10.1021/jf904204n
  9. Flaczyk, E., M. Rudzinska, E. Wasowicz, J. Korczak, and R. Amarowicz. 2006. Effect of cracklings hydrolysates on oxidative stability of pork meatballs fat. Food Res. Intl. 39:924-931. https://doi.org/10.1016/j.foodres.2006.05.004
  10. Jang, A., C. Jo, K. S. Kang, and M. Lee. 2008. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensinconverting enzyme (ACE) inhibitory peptides. Food Chem. 107:327-336. https://doi.org/10.1016/j.foodchem.2007.08.036
  11. Janitha, P. K., P. D. Wanasundara, A. R. S. Ross, R. Amarowicz, S. J. Ambrose, R. B. Pegg, and P. J. Shand. 2002. Peptides with angiotensin I-converting enzyme (ACE) inhibitory activity from defibrinated, hydrolyzed bovine plasma. J. Agric. Food Chem. 50:6981-6988. https://doi.org/10.1021/jf025592e
  12. Je, J. Y., P. J. Park, H. G. Byun, W. K. Jung, and S. W. Kim. 2005a. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Bioresour. Technol. 96:1624-1629. https://doi.org/10.1016/j.biortech.2005.01.001
  13. Je, J. Y., P. J. Park, and S. K. Kim. 2005b. Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Int. 38:45-50. https://doi.org/10.1016/j.foodres.2004.07.005
  14. Jin, S. K., I. S. Kim, Y. J. Choi, B. G. Kim, and S. J. Hur. 2010. Effect of surimi containing spent laying hen breast on the quality of crab analogue. J. Food Process Eng. 33:745-762.
  15. Jin, S. K., I. S. Kim, H. J. Jung, D. H. Kim, Y. J. Choi, and S. J. Hur. 2007. The development of sausage including meat from spent laying hen surimi. Poult. Sci. 86:2676-2684. https://doi.org/10.3382/ps.2006-00451
  16. Kaviarasan, S., N. Ramamurthy, P. V. Gunasekaran, E. Varalakshmi, and C. V. Anuradha. 2007. Epigallocatechin-3- gallate(-) protects Chang liver cells against ethanol-induced cytotoxicity and apoptosis. Basic Clin. Pharmacol. Toxicol. 100:151-156. https://doi.org/10.1111/j.1742-7843.2006.00036.x
  17. Liu, Q., B. Kong, L. Jiang, X. Cui, and J. Liu. 2009 Free radical scavenging activity of porcine plasma protein hydrolysates determined by electron spin resonance spectrometer. LWT-Food Sci. Technol. 42:956-962. https://doi.org/10.1016/j.lwt.2008.12.007
  18. Liu, Q., B. Kong, G. Li, N. Liu, and X. Xia. 2011. Hepatoprotective and antioxidant effects of porcine plasma protein hydrolysates on carbon tetrachloride-induced liver damage in rats. Food Chem. Toxicol. 49:1316-1321. https://doi.org/10.1016/j.fct.2011.03.013
  19. Lee, S. J., E. K. Kim, J. W. Hwang, H. J. Oh, S. H. Cheong, S. H. Moon, B. T. Jeon, S. M. Lee, and P. J. Park. 2010. Purification and characterisation of an antioxidative peptide from enzymatic hydrolysates of duck processing by-products. Food Chem. 123:216-220. https://doi.org/10.1016/j.foodchem.2010.04.001
  20. Marklund, S. and G. Marklund. 2006. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47:469-474.
  21. Moure, A., H. Dominguez, and J. C. Parajo. 2006. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 41:447-456. https://doi.org/10.1016/j.procbio.2005.07.014
  22. Pena-Ramos, E. A. and Y. L. Xiong. 2003. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Sci. 64:259-263. https://doi.org/10.1016/S0309-1740(02)00187-0
  23. Perna, A. F., D. Ingrosso, and N. G. De Santo. 2003. Homocysteine and oxidative stress. Amino Acids 25:409-417. https://doi.org/10.1007/s00726-003-0026-8
  24. Qian, Z. J., W. K. Jung, and S. K. Kim. 2008. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresour. Technol. 99:1690-1698. https://doi.org/10.1016/j.biortech.2007.04.005
  25. Rosen, G. M. and E. J. Rauckman. 1984. Spin trapping of superoxide and hydroxyl radicals. In: Methods in Enzymology (Ed. L. Packer). Academic Press, Orlando, FL, USA. 105:198-209. https://doi.org/10.1016/S0076-6879(84)05026-6
  26. Saiga, A., T. Okumura, T. Makihara, S. Katsuta, T. Shinizu, R. Yamada, and T. Nishimura. 2003. Angiotensin I-converting enzyme inhibitory peptides in a hydrolyzed chicken breast muscle extract. J. Agric. Food Chem. 51:1741-1745. https://doi.org/10.1021/jf020604h
  27. Sakanaka, S. and Y. Tachibana. 2006. Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates. Food Chem. 95:243-249 https://doi.org/10.1016/j.foodchem.2004.11.056
  28. Siriangkanakun, S. and J. Yongsawatdigul. 2012. Trypsin inhibitory activity and gel-enhancing effect of sarcoplasmic proteins from common carp. J. Food Sci. 77:C1124-C1130. https://doi.org/10.1111/j.1750-3841.2012.02919.x
  29. Udenigwe, C. C. and A. Mohan. 2014. Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. J. Funct. Foods. 8:45-52. https://doi.org/10.1016/j.jff.2014.03.002
  30. Udenigwe, C. C., H. Li, and R. E. Aluko. 2012. Quantitative structure-activity relationship modeling of renin-inhibiting dipeptides. Amino Acids 42:1379-1386. https://doi.org/10.1007/s00726-011-0833-2
  31. Wu, H. C., H. M. Chen, and C. Y. Shiau. 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36:949-957. https://doi.org/10.1016/S0963-9969(03)00104-2
  32. Wu, K. C., Z. Y. Lin, S. H. Chiang, and C. Y. Chang. 2004. Antioxidant properties of porcine blood protein before and after enzymatic hydrolysis. J. Biomass Energ. Soc. China. 23:79-85.