DOI QR코드

DOI QR Code

Genetic Diversity and Phylogenetic Analysis of South-East Asian Duck Populations Based on the mtDNA D-loop Sequences

  • Sultana, H. (Division of Animal and Dairy Science, Chungnam National University) ;
  • Seo, D.W. (Division of Animal and Dairy Science, Chungnam National University) ;
  • Bhuiyan, M.S.A. (Department of Animal Breeding and Genetics, Bangladesh Agricultural University) ;
  • Choi, N.R. (Division of Animal and Dairy Science, Chungnam National University) ;
  • Hoque, M.R. (Genetbio Inc.) ;
  • Heo, K.N. (Poultry Science Division, National Institute of Animal Science, RDA) ;
  • Lee, J.H. (Division of Animal and Dairy Science, Chungnam National University)
  • Received : 2015.12.15
  • Accepted : 2016.03.21
  • Published : 2016.12.01

Abstract

The maternally inherited mitochondrial DNA (mtDNA) D-loop region is widely used for exploring genetic relationships and for investigating the origin of various animal species. Currently, domestic ducks play an important role in animal protein supply. In this study, partial mtDNA D-loop sequences were obtained from 145 samples belonging to six South-East Asian duck populations and commercial duck population. All these populations were closely related to the mallard duck (Anas platyrhynchos), as indicated by their mean overall genetic distance. Sixteen nucleotide substitutions were identified in sequence analyses allowing the distinction of 28 haplotypes. Around 42.76% of the duck sequences were classified as Hap_02, which completely matched with Anas platyrhynchos duck species. The neighbor-joining phylogenetic tree also revealed that South-East Asian duck populations were closely related to Anas platyrhynchos. Network profiles were also traced using the 28 haplotypes. Overall, results showed that those duck populations D-loop haplotypes were shared between several duck breeds from Korea and Bangladesh sub continental regions. Therefore, these results confirmed that South-East Asian domestic duck populations have been domesticated from Anas platyrhynchos duck as the maternal origins.

Keywords

References

  1. Baker, A. J. and H. D. Marshall. 1997. Mitochondrial control region sequences as tools for understanding evolution. In: Avian Molecular Evolution and Systematics (Ed. D. P. Mindell). Academic Press, San Diego, USA. pp. 51-82.
  2. Bandelt, H. J., P. Forster, and A. Rohl. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16:37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  3. Bensasson, D., D. Zhang, D. L. Hartl, and G. M. Hewitt. 2001. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends Ecol. Evol. 16:314-321. https://doi.org/10.1016/S0169-5347(01)02151-6
  4. Bensasson, D., M. W. Feldman, and D. A. Petrov. 2003. Rates of DNA duplication and mitochondrial DNA insertion in the human genome. J. Mol. Evol. 57:343-354. https://doi.org/10.1007/s00239-003-2485-7
  5. BER (Bangladesh Economic Review). 2012. Ministry of Finance, Government of the People's Republic of Bangladesh. Dhaka, Bangladesh. pp. 92-93.
  6. Brown, W. M., M. George Jr., and A. C. Wilson. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 76:1967-1971.
  7. Cherry, P. and T. R. Morris. 2008. Domestic Duck Production: Science and Practice. (Paperback ed.) CAB International, Wallingford, Oxfordshire, UK.
  8. Choi, N. R., D. W. Seo, S. D. Jin, H. Sultana, K. N. Heo, and J. H. Lee. 2014. Phylogenetic Analysis using mtDNA Sequences in Korean Native Ducks. Kor. J. Poult. Sci. 41:235-240. https://doi.org/10.5536/KJPS.2014.41.4.235
  9. Delport, W., J. W. Ferguson, and P. Bloomer. 2002. Characterization and evolution of the mitochondrial DNA control region in hornbills (Bucerotiformes). J. Mol. Evol. 54:794-806. https://doi.org/10.1007/s00239-001-0083-0
  10. FAO. 2004. First Report on the State of the World's Animal Genetic Resources (AnGR), Bangladesh. p. 40.
  11. FAO (Food and Agriculture Organization of the United Nations). 2014. Global Poultry Trends 2013: Record World Duck Meat Production in 2013, ISSN 0251-1959.
  12. Hall, T. 1999. Bioedit: A biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acid Symp. Series. 41:95-98.
  13. Hey, J. 2006. Recent advances in assessing gene flow between diverging populations and species. Curr. Opin. Genet. Dev. 16:592-596. https://doi.org/10.1016/j.gde.2006.10.005
  14. Hong, E. C., H. J. Choo, B. S. Kang, C. D. Kim, K. N. Heo, M. J. Lee, J. Hwangbo, O. S. Suh, H. C. Choi, and H. K. Kim. 2012. Performance of growing period of large-type Korean native ducks. Kor. J. Poult. Sci. 39:143-149. https://doi.org/10.5536/KJPS.2012.39.2.143
  15. Hoque, M. R., C. K. Jung, B. K. Park, K. D. Choi, and J. H. Lee. 2009. Genetic variability of mtDNA D-loop region in Korean native chickens. Kor. J. Poult. Sci. 36:323-328. https://doi.org/10.5536/KJPS.2009.36.4.323
  16. Hoque, M. R., N. R. Choi, H. Sultana, B. S. Kang, K. N. Heo, S. K. Hong, C. Jo, and J. H. Lee. 2013. Phylogenetic analysis of a privately-owned Korean native chicken population using mtDNA D-loop variations. Asian Australas. J. Anim. Sci. 26:157-162. https://doi.org/10.5713/ajas.2012.12459
  17. Hoque, M. R., S. H. Lee, K. C. Jung, B. S. Kang, M. N. Park, H. K. Lim, K. D. Choi, and J. H. Lee. 2011. Discrimination of Korean native chicken populations using SNPs from mtDNA and MHC polymorphisms. Asian Australas. J. Anim. Sci. 24:1637-1643. https://doi.org/10.5713/ajas.2011.11144
  18. Jin, S. D., M. R. Hoque, D. W. Seo, W. K. Paek, T. H. Kang, H. K. Kim, and J. H. Lee. 2014. Phylogenetic analysis between domestic and wild duck species in Korea using mtDNA D-loop sequences. Mol. Biol. Rep. 41:1645-1652. https://doi.org/10.1007/s11033-013-3012-6
  19. Jin, S. D., M. R. Hoque, D. W. Seo, I. K. Kim, C. Jo, W. K. Paek, and J. H. Lee. 2012. Phylogenetic relationships among dabbling duck species in Korea using COI gene variations in mtDNA. J. Poult. Sci. 49:163-170. https://doi.org/10.2141/jpsa.011102
  20. Johnson, K. P. and M. D. Sorenson. 1999. Phylogeny and biogeography of dabbling ducks (Genus: Anas): A comparison of molecular and morphological evidence. Auk 116:792-805. https://doi.org/10.2307/4089339
  21. Kim, H. K., B. S. Kang, J. Hwangbo, C. D. Kim, K. N. Heo, H. J. Choo, D. S. Park, O. S. Suh, and E. C. Hong. 2012. The study on growth performance and carcass yield of meat-type Korean native ducks. Kor. J. Poult. Sci. 39:45-52. https://doi.org/10.5536/KJPS.2012.39.1.045
  22. Kulikova, I. V., Y. N. Zhuravlev, and K. G. McCracken. 2004. Asymmetric hybridization and sex-biased gene flow between eastern Spot-Billed ducks (Anas zonorhyncha) and Mallards (Anas platyrhynchos) in the Russian Far East. Auk 121:930-949. https://doi.org/10.1642/0004-8038(2004)121[0930:AHASGF]2.0.CO;2
  23. Leekaew, P., T. Songserm, A. Choothesa, and U. Boonyaprakob. 2008. A simple method to extract mitochondrial DNA in a noninvasive phylogenetic study of domestic native Thai ducks. Kasetsart J. Soc. Sci. 42:41-50.
  24. Librado, P. and R. Julio. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25:1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  25. Lopez, J. V., N. Yuhki, R. Masuda, W. Modi, and S. J. O'Brien. 1994. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J. Mol. Evol. 39:174-190.
  26. Moore, W. S. and V. R. DeFilippis. 1997. The window of taxonomic resolution for phylogenies based on mitochondrial cytochrome b. In: Avian Molecular Evolution and Systematics (Ed. D. P. Mindell) Academic Press, San Diego, CA, USA. pp. 83-119.
  27. Purwantini, D., T. Yuwanta, T. Hartatik, and Ismoyowati. 2013. Polymorphism of D-loop mitocondrial DNA region and phylogenetic in five Indonesian native duck population. Int. J. Poult. Sci. 12:55-63. https://doi.org/10.3923/ijps.2013.55.63
  28. Qu, L. J., W. Lui, F. X. Yang, Z. C. Hou, J. X. Zheng, G. Y. Xu, and N. Yang. 2009. Origin and domestication history of Peking ducks determined through microsatellite and mitochondrial marker analysis. Sci. China, C, Life Sci. 52:1030-1035. https://doi.org/10.1007/s11427-009-0145-x
  29. Sorenson, M. D. and R. C. Fleischer. 1996. Multiple independent transpositions of mitochondrial DNA control region sequences to the nucleus. Proc. Natl. Acad. Sci. USA. 93:15239-15243. https://doi.org/10.1073/pnas.93.26.15239
  30. Tamura K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  31. Woischnik, M. and C. T. Moraes. 2002. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res. 12:885-893. https://doi.org/10.1101/gr.227202
  32. Wojcik, E. and E. Smalec. 2007. Description of the mallard duck (Anas platyrhynchos) karyotype. Folia Biol. (Krakow). 55:115-120. https://doi.org/10.3409/173491607781492588
  33. Wu, Z. Y., S. C. Zeng, Y. Z. Luo, and J. L. Han. 2011. A mystery in sequencing the mitochondrial DNA D-loop from blood samples of domestic Mallard duck. J. Biol. Sci. 11:181-188. https://doi.org/10.3923/jbs.2011.181.188
  34. Zaman, G., R. N. Goswami, A. Aziz, N. Nahardeka, T. C. Roy, and J. D. Mahanta. 2005. Farming system of Nageswari ducks in North-Eastern India (Assam). World's Poult. Sci. J. 61:687-693. https://doi.org/10.1079/WPS200579

Cited by

  1. Can Mitochondria DNA Provide a Novel Biomarker for Evaluating the Risk and Prognosis of Colorectal Cancer? vol.2017, pp.1875-8630, 2017, https://doi.org/10.1155/2017/5189803
  2. Origin, genetic diversity and evolution of Andaman local duck, a native duck germplasm of an insular region of India vol.16, pp.2, 2016, https://doi.org/10.1371/journal.pone.0245138
  3. Mitochondrial Markers for the Detection of Duck Breeds Using Polymerase Chain Reaction vol.12, pp.6, 2016, https://doi.org/10.3390/genes12060857