DOI QR코드

DOI QR Code

Application of Semiconductor Nanowires Based on Bottom-up Growth

바텀업 기반의 반도체 나노와이어 합성방법 및 응용소자 연구

  • 이원우 (한양대학교 신소재공학과) ;
  • 양동원 (한양대학교 신소재공학과) ;
  • 박원일 (한양대학교 신소재공학과)
  • Published : 2016.09.30

Abstract

Semiconductor nanowires (NWs) refer to one-dimensional semiconductor materials that have a diameter constrained to tens of nanometers or less and an unconstrained length. Over the past few decades, most efforts in the semiconductor NWs have been focused on synthesis, structure and morphology control, and assembly, as appropriate for diverse functional device applications. This paper provides a detailed overview of the recent research activities and major achievements in nanowire research, which especially includes nanowires synthesis, position and direction-controlled assembly or growth. In addition, the fine tuning of structure and morphology, and the related properties and device applications of the NWs are highlighted.

Keywords

References

  1. S. K. Kim, K. D. Song, T. J. Kempa, R. W. Day, C. M. Lieber, H. G. Park, Acs Nano 8, 3707 (2014). https://doi.org/10.1021/nn5003776
  2. W. Shim, J. Yao, C. M. Lieber, Nano letters 14, 5430 (2014). https://doi.org/10.1021/nl502654f
  3. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, Q. Xiong, Nature communications 5, 4953 (2014). https://doi.org/10.1038/ncomms5953
  4. J. Yao, H. Yan, C. M. Lieber, Nature nanotechnology 8, 329 (2013). https://doi.org/10.1038/nnano.2013.55
  5. L. Chen, W. Lu, C. M. Lieber, 1 (2014).
  6. L. Xu., Z. Jiang., L. Mai., Q. Qing., Nano letters 14, 3602 (2014). https://doi.org/10.1021/nl5012855
  7. K. Chung, H. Beak, Y. Tchoe, H. Oh, H. Yoo, M. Kim, G. C. Yi, Apl Materials 2, (2014).
  8. Y. J. Hong, C. H. Lee, A. Yoon, M. Kim, H. K. Seong, H. J. Chung, C. Sone, Y. J. Park, G. C. Yi, Advanced materials 23, 3284 (2011). https://doi.org/10.1002/adma.201100806
  9. Y. J. Kim, H. Yoo, C. H. Lee, J. B. Park, H. Baek, M. Kim, G. C. Yi, Advanced materials 24, 5565 (2012). https://doi.org/10.1002/adma.201201966
  10. C. H. Lee, Y. J. Kim, Y. J. Hong, S. R. Jeon, S. Bae, B. H. Hong, G. C. Yi, Advanced materials 23, 4614 (2011). https://doi.org/10.1002/adma.201102407
  11. C. H. Lee, J. Yoo, Y. J. Hong, J. Cho, Y. J. Kim, S. R. Jeon, J. H. Baek, G. C. Yi, Applied Physics Letters 94, (2009).
  12. H. Oh, Y. J. Hong, K. S. Kim, S. Yoon, H. Baek, S. H. Kang, Y. K. Kwon, M. Kim, G. C. Yi, Npg Asia Mater 6, (2014).
  13. W. I. Park, D. H. Kim, S. W. Jung, G.-C. Yi, Applied Physics Letters 80, 4232 (2002). https://doi.org/10.1063/1.1482800
  14. W. I. Park, G. C. Yi, M. Kim, S. J. Pennycook, Advanced materials 15, 526 (2003). https://doi.org/10.1002/adma.200390122
  15. K. S. Kim, H. Jeong, M. S. Jeong, G. Y. Jung, Advanced Functional Materials 20, 3055 (2010). https://doi.org/10.1002/adfm.201000613
  16. W. W. Lee, J. Yi, S. B. Kim, Y.-H. Kim, H.-G. Park, W. I. Park, Crystal Growth & Design 11, 4927 (2011). https://doi.org/10.1021/cg200806a
  17. Z. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi, H. Xu, Nature materials 2, 821 (2003). https://doi.org/10.1038/nmat1014
  18. H. Zhang, D. R. Yang, D. S. Li, X. Y. Ma, S. Z. Li, D. L. Que, Crystal Growth & Design 5, 547 (2005). https://doi.org/10.1021/cg049727f
  19. J. M. Lee, Y. S. No, S. Kim, H. G. Park, W. I. Park, Nature communications 6, 6325 (2015). https://doi.org/10.1038/ncomms7325
  20. W. W. Lee, S. Chang, D. W. Yang, J. M. Lee, H.-G. Park, W. I. Park, CrystEngComm, (2016).
  21. M. S. Kang, C.-H. Lee, J. B. Park, H. Yoo, G.-C. Yi, Nano Energy 1, 391 (2012). https://doi.org/10.1016/j.nanoen.2012.03.005
  22. C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z. L. Wang, Nature Photonics 7, 752 (2013). https://doi.org/10.1038/nphoton.2013.191