DOI QR코드

DOI QR Code

자발적 온실가스 감축목표 달성을 위한 발전기술별 온실가스저감 잠재량 평가

Abatement Potentials of Power Generation Technologies for the Achievement of National INDC

  • 백민호 (아주대학교 에너지시스템학과) ;
  • 노민영 (아주대학교 에너지시스템학과) ;
  • ;
  • 김수덕 (아주대학교 에너지시스템학과)
  • Baek, Minho (Department of Energy Systems Research, Ajou University) ;
  • Roh, Minyoung (Department of Energy Systems Research, Ajou University) ;
  • Yurnaidi, Zulfikar (Department of Energy Systems Research, Ajou University) ;
  • Kim, Suduk (Department of Energy Systems Research, Ajou University)
  • 투고 : 2016.09.12
  • 심사 : 2016.11.22
  • 발행 : 2016.12.31

초록

전 세계는 온실가스 배출량을 저감하기 위한 방안을 제시하고 있다. 우리나라는 2030년 전망치 대비 국내에서 25.7%, 전체로는 37%의 국가 자발적 감축목표를 제출하였다. 본 연구에서는 기술평가를 위한 통합평가모형인 GCAM(Global Change Assessment Model)을 이용하여 국가 자발적 감축목표에서 제시한 감축목표 25.7%가 우리나라 에너지시스템에 미치는 영향을 평가한다. 분석결과, 석탄, 가스를 사용하는 발전기술은 각각 28%, 13.5% 발전량이 줄어드는 것으로 나타나지만, 바이오매스, 풍력, 태양에너지는 각각 47.6%, 22.0% 그리고 45.4% 증가하는 것으로 나타났다. 주목할 점은 신기술로 분류되는 USC(초초임계발전) 등 화석연료 발전기술들이 온실가스 감축목표달성에 전혀 또는 거의 기여하지 못하는 결과를 보인다는 점에서 향후 신기술을 선정할 때 정량적 평가 등 세심한 주의가 필요함을 보여준다.

In accordance with the global efforts to reduce greenhouse gas emissions, Korean government submitted its INDC (Intended Nationally Determined Contribution) of 25.7% for domestic reduction and the total of 37% reduction by 2030 including the purchase of emission reduction permit from abroad. In this study, 25.7% reduction target is being evaluated to see its impact on domestic energy system using the integrated assessment model, GCAM (Global Change Assessment Model). Results show that electricity generation from fossil fuel technologies using coal and gas decrease by 28.0%, 13.5% while that of biomass, wind power, solar energy increase by 47.6%, 22.0% and 45.4%, respectively. It is worth noting that so called new technology such as USC (ultra supercritical power generation) does not contribute to achieving the emission reduction target and careful and quantitative analysis is required for such categorization in the future.

키워드

참고문헌

  1. 관계부처합동, "Post-2020 온실가스 감축목표 설정 추진계획", 2015.
  2. 관계부처합동, "기후변화 대응과 신산업 창출을 위한 청정에너지기술 발전전략(안)", 세종, 2016, pp.1-54.
  3. 김수덕.S. Kim, "건물부문 에너지효율향상 평가를 위한 국제기술평가 Tool 개발(2012T-100100600), 에너지기술평가원, 최종보고서", 2015.
  4. 김수덕.오재익.민은주.Zulfikar Y.백민호.전승호.노민영, "온실가스 감축을 위한 에너지분야 핵심기술 발굴 및 효과분석 연구", 산업통산자원부, 2016.
  5. 김수이.조경엽.유승직, "동태 글로벌 CGE 모형을 활용한 정책 포트폴리오의 Post-2012 경제적 파급효과분석", 자원.환경경제연구, 제18권 제4호, 2009, pp. 587-635.
  6. 노동운.오인하, "저탄소 경제 시스템 구축 전략 연구: 상하향식 통합모형 개발 및 저탄소정책효과 분석", 에너지경제연구원, 기본연구보고서 2010-32, 경기, 2010, pp. 1-203.
  7. 노동운, "차세대 에너지공급시스템 기반 구축 연구 - 미래수소경제 경쟁력 확보를 위한 수소 공급가격 및 공급방안 연구", 에너지경제연구원, 기본연구보고서 2011-10, 경기, 2010, pp. 1-120.
  8. 노동운.부경진.조상민, "미래 수소경제 실현을 위한 기반 구축연구: 수소경제 이행의 산업 및 국민경제 파급효과 분석", 에너지경제연구원, 기본연구보고서 2011-10, 경기, 2010, pp. 1-355.
  9. 배정환.조경엽, "동태 CGE 모형을 활용한 수소에너지 보급의 경제적 영향 추정", 자원.환경경제연구, 제16권 제2호, 2007, pp. 275-311.
  10. 백민호.Zulfikar Y..오재익.김수덕, "GCAM을 이용한 건물부문 실내온도 규제의 효과 분석", 한국자원공학회지, 제53권 제1호, 2016, pp. 10-18. https://doi.org/10.12972/ksmer.2016.53.1.010
  11. 백민호.Zulfikar Y..오재익.김수덕, "GCAM-EML을 이용한 대형상업용 건물에너지 효율변화의 장기영향 분석", 에너지경제연구, 제14권 제3호, 2015, pp. 229-264.
  12. 산업통상자원부, "제2차 에너지기본계획", 2014.
  13. 산업통상자원부, "제7차 전력수급기본계획(2015-2029)", 산업통상자원부, 세종, 2015, pp. 1-77.
  14. 안지운, "TIMES 모형을 이용한 에너지 기술 전망: 신재생에너지 활용 부문을 중심으로", 에너지경제연구원, 기본연구보고서 14-14, 울산, 2015, pp. 1-106.
  15. 오인하.오상봉, "발전부문 하이브리드 모형을 사용한 기후변화 정책효과 분석", 자원.환경경제연구, 제22권 제4호, 2013, pp. 691-726,
  16. 온실가스종합정보센터, "국가온실가스 인벤토리 보고서(1990-2013)", 2015, pp. 382-405.
  17. 외교통상부, "Korea's efforts to address climate change", 접속일: 2016.6.23., http://www.mofa.go.kr/ENG/policy/energy/overview/climate/index.jsp?tabmenu=t_2.
  18. 정현식.이성욱, "SGM_Korea 모형을 이용한 탄소세의 이산화탄소 배출저감 효과분석", 자원.환경경제연구, 제16권 제1호, 2007, pp. 129-169.
  19. 전력통계정보시스템, 발전실적 발전량, 접속일: 2016.1.10. http://epsis.kpx.or.kr/
  20. 최병렬, "집단에너지 중장기 공급 목표 설정 모형 구축연구", 에너지경제연구원, 기본연구보고서 2015-03, 울산, 2015, pp. 1-116.
  21. 환경부, "온실가스 배출 전망 및 감축잠재량 예측.분석.평가 기술 개발", 환경부 대기환경정책대응기술, 최종보고서, 연세대학교, 2012.
  22. Brenkert, A. L., S. H. Kim, A. J. Smith, and H. M. Pitcher, "Model documentation for the MiniCam", PNNL-14337, Pacific Northwest National Laboratory, Richland, WA., US. 2003, pp. 1-188.
  23. Chaturvedi V., L. Clarke, J. Edmonds, K. Calvin, and P. Kyle, "Capital investment requirements for greenhouse gas emissions mitigation in power generation on near term to century time scales and global to regional spatial scales", Energy Economics, Vol. 46, 2014, pp. 267-278. https://doi.org/10.1016/j.eneco.2014.09.008
  24. Clarke, J. and J. Edmonds, "Modelling energy technologies in a competitive market", Energy Economics, Vol. 15, 1992, pp. 123-129.
  25. Clarke L., A. Fawcett, J. Weyant, J. McFarland, V. Chaturvedi, and Y. Zhou, "Technology and U.S. emissions reductions goals: Results of the EMF 24 modeling exercise", The Energy Journal, Vol. 35, No. SI1, 2014, pp. 9-32.
  26. Després, J., N. Hadjsaid, P. Criqui, and I. Noirot, "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools", Energy, Vol. 80, 2015, pp. 486-495. https://doi.org/10.1016/j.energy.2014.12.005
  27. Energy Modeling Forum, "Energy efficiency and climate change mitigation", EMF Report 25, Vol. I, Stanford University, Stanford, CA 94305-4121, 2011, pp. 1-43.
  28. Energy Modeling Forum, "Changing the game?: Emissions and market implications of new natural gas supplies", EMF Report 26, Vol. I, Stanford University, Stanford, CA 94305-4121, 2013, pp. 1-45.
  29. Energy Information Agency (EIA), "Updated capital cost estimates for utility scale electricity generating plants", U.S. Department of Energy, Washington DC 20585, 2013, pp. 1-201.
  30. Energy Information Agency (EIA), "Updated capital cost estimates for electricity generation plants", U.S. Energy Information Administration, Office of Energy Analysis U.S. Department of Energy, Washington, DC 20585, 2010.
  31. Eom, J., G. P. Kyle, L. E. Clarke, P. L. Patel, and S. H. Kim, "China's building energy use: along-term perspective based on a detailed assessment", Pacific Northwest National Laboratory. PNNL-21073, 2012.
  32. Keepin, B. and B. Wynne, "Technical analysis of IIASA energy scenarios", Nature 312, 1984, pp. 691-695. https://doi.org/10.1038/312691a0
  33. Korea Energy Technology Evaluation and Planning (KETEP), inside information, 2016.
  34. McFadden, D., "Conditional logit analysis of qualitative choice behavior", in Zarambkaed., Frontiers in Econometrics, NY, Academic Press, 1973.
  35. Min, E. J., "A derivation of sectoral marginal abatement cost (MAC) curves for Korean economy using a CGE model", PhD Thesis, The Graduate School of Ajou University, 2016.
  36. Mishra, G. S., P. Kyle, J. Teter, G. M. Morrison, S. Kim, and S. Yeh, "Transportation module of global change assessment model (GCAM): model documentation", No. UCD-ITS-RR-13-05, 2013.
  37. Mission Innovation Secretariat. "Mission Innovation: Accelerating the clean energy revolution - baseline, doubling, and narrative information", Submitted by Mission Innovation Countries and the European Union, 2016, pp. 95-97.
  38. Park, S. Y., B. Y. Yun, C. Y. Yun, D. H. Lee, and D. G. Choi, "An analysis of the optimum renewable energy portfolio using the bottom-up model: Focusing on the electricity generation sector in South Korea", Renewable and Sustainable Energy Reviews, Vol. 53, 2016, pp. 319-329. https://doi.org/10.1016/j.rser.2015.08.029
  39. Roehrl, R. A., "Sustainable development scenarios for rio+ 20: A component of The SD21 project", New York, United Nation of Economic And Social Affairs, Division for Sustainable Development, 2013.
  40. UNESCO, “World modeling, report” by Heinrich Siegmann, Wissenschaftszentrum Berlin(International Institute for Comparative Social Research, Berlin), BEP/GPI/2, 1985.
  41. UNFCCC, "Intended nationally determined contribution: Submission by the Republic ofKorea", 2016, pp. 1-4.
  42. Weyant, J. P., F. C. de la Chesnaye, and G. J. Blanford, "Overview of EMF-21: multigasmitigation and climate policy", The Energy Journal, Vol. 27, 2016, pp. 1-32.
  43. Yurnaidi, Z., “A Modeling and analysis of petroleum products in Korean energy system using integrated assessment model”, PhD Thesis, The Graduate School of Ajou University, 2016.
  44. Zhou, Y., J. Eom, and L. Clarke, "The effect of global climate change, population distribution, and climate mitigation on building energy use in the U.S. and China", Climatic Change, Vol. 119, Issue 3, 2013a, pp. 979-992. https://doi.org/10.1007/s10584-013-0772-x
  45. Zhou, S., G. P. Kyle, S. Yu, L. E. Clarke, J. Eom, P. Luckow, and J. A. Edmonds, "Energy use and $CO_2$ emissions of China's industrial sector from a global perspective", Energy Policy, Vol. 53, 2013b, pp. 284-294.