DOI QR코드

DOI QR Code

Angle resolved photoemission spectroscopy with surface-electron-doping

표면전자도핑 기법을 활용한 각분해능 광전자분광 연구

  • 김용관 (한국과학기술원 물리학과)
  • Published : 2016.12.30

Abstract

Angle resolved photoemission spectroscopy (ARPES) is a powerful technique which can directly visualize the electronic structure of solid in detail including many-body interaction information. However, ARPES has a certain limitation in applying control parameters such as doping or pressure, which helps to dig out the clue to understand the desired phenomena or the target system. During ARPES experiment, the control parameter is the temperature only. Other parameters especially electric- and magnetic- field cannot be applied. Recently introduced surface-electron doping technique highlights new avenue to overcome such limitation. In this article, starting from introducing basic concepts of ARPES and its current status, the power of new technique will be demonstrated when it is combined to ARPES by introducing recent results on iron based superconductors.

Keywords

References

  1. H. Ding, M. R. Norman, J. C. Campuzano, M. Randeria, A. F. Bellman, T. Yokoya, T. Takahashi, T. Mochiku, and K. Kadowaki, Phys. Rev. B 54, 6978 (1996).
  2. Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, Z. X. Shen, Science 329, 659-662 (2010). https://doi.org/10.1126/science.1189924
  3. https://en.wikipedia.org/wiki/Angle-resolved_photoemission_spectroscopy#/media/File:ARPESgeneral.png.
  4. M. A. Hossain, J. D. F. Mottershead, D. Fournier, A. Bostwick, J. L. McChesney, E. Rotenberg, R. Liang, W. N. Hardy, G. A. Sawatzky, I. S. Elfimov, D. A. Bonn & A. Damascelli, Nat. Phys. 4, 527-531 (2008). https://doi.org/10.1038/nphys998
  5. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951-954 (2006). https://doi.org/10.1126/science.1130681
  6. J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. D. Denlinger, Y.Yi, H. J. Choi, K. S. Kim, Science 349, 723-726 (2015). https://doi.org/10.1126/science.aaa6486
  7. Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil & Z.-X. Shen, Nat. Nanotech. 9, 111-115 (2014). https://doi.org/10.1021/ja800073m
  8. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296-3297 (2008). https://doi.org/10.1021/ja800073m
  9. Q.-Y. Wang, Z. Li, W.-H. Zhang, Z.-C. Zhang, J.-S. Zhang, W. Li, H. Ding, Y.-B. Ou, P. Deng, K. Chang, Chin. Phys. Lett. 29, 037402 (2012). https://doi.org/10.1088/0256-307X/29/3/037402
  10. S. S. Seo, B. Y. Kim, B. S. Kim, J. K. Jeong, J. M. Ok, Jun Sung Kim, J. D. Denlinger, S.-K. Mo, C. Kim & Y. K. Kim, Nat. commun 7, 11116 (2016). https://doi.org/10.1038/ncomms11116
  11. M. Nakajima, S. Ishida, K. Kihou, Y. Tomioka, T. Ito, Y. Yoshida, C. H. Lee, H. Kito, A. Iyo, H. Eisaki, K. M. Kojima, and S. Uchida, Phys. Rev. B 81, 104528 (2010). https://doi.org/10.1103/PhysRevB.81.104528
  12. W. S. Kyung, S. S. Huh, Y. Y. Koh, K.-Y. Choi, M. Nakajima, H. Eisaki, J. D. Denlinger, S.-K. Mo, C. Kim, & Y. K. Kim, Nat. Mater. 15, 1233-1236 (2016). https://doi.org/10.1038/nmat4728