

신형식 FRP DSCT 풍력타워의 단면설계와 해석 Section Design and Analysis of FRP DSCT Wind Tower

김 성 원 Sungwon Kim 한국해양과학기술원 연안개발연구센터 swkim@kiost.ac.kr

홍 혜 민 Hyemin Hong 한국해양과학기술원 연안개발연구센터 hyeminhong@kiost.ac.kr

한 택 희 Taek Hee Han 한국해양과학기술원 연안개발연구센터 taekheehan@kiost.ac.kr

머리말

화석에너지 고갈과 이산화탄소배출 등의 환경문제가 교토의정서나 파리의정서 등과 같이 국제적으로 국제적 으로 이슈화되면서 신재생에너지에 대한 관심이 높아지 고 있다. 신재생에너지 실용화를 위한 관련 사업과 연구 들이 진행되고 있으며, 신재생에너지원으로서 태양열, 풍력, 바이오에너지, 지열, 파력, 조력 등이 활용되고 있 다. 그중에서도 바람에너지를 이용한 풍력발전의 효율 이 상대적으로 우수하여, 유럽 및 중국, 북미 시장을 중 심으로 지속적인 성장세를 보이고 있으며, 향후 아시아 시장의 성장이 예측되고 있다. 풍력터빈은 효율성 증대 를 위하여, 그 용량이 점차 증가하고 있는 추세이며, 양 질의 바람이 풍부하고, 육상에서의 소음으로 인한 민원 문제 등이 해결 가능한 해상풍력발전에 대한 관심이 계 속해서 증가하고 있다. 이와 같이 풍력터빈의 용량 증가 에 따라 블레이드의 길이와 타워의 높이 역시 증가하고 있다. 하지만 타워의 높이가 증대됨에 따라 기존의 강재 타워는 높은 세장비로 인한 좌굴 파괴의 위험성이 증가 하여, 이를 해결하기 위한 방안이 필요하다. 이에 한국 해양과학기술원에서는 DSCTDouble-Skinned Composite Tubular or Double-Skinned Concrete filled Tubular 구조를 적용한 신형식 풍 력타워를 개발 중이며, 본 기사에서는 FRP 소재를 적용 한 DSCT 풍력타워의 단면설계 및 해석에 대하여 소개 하고자한다.

FRP DSCT 풍력타워

DSCT 구조는 그림 1과 같이 동심同心을 갖는 두 개

Fig. 1 Cross section of DSCT Column

Fig. 2 Triaxially confined concrete in a DSCT column (Han et al., 2010)

의 튜브 사이에 콘크리트를 충전한 구조이다. 이 구조는 Shakir-Khalil 등에 의하여 1987년에 처음 소개되었으 며, 이후 기둥의 축강도와 내·외부 튜브 재료의 특성에 대한 연구들이 진행되어져오고 있다. DSCT는 3가지의 구성요소(콘크리트, 내부튜브, 외부튜브) 각각의 강도를 더 한 것 보다 그림 1과 같이 함께 구성되어있을 때의 강도 가 10~30% 더 큰 것으로 알려져 있다 (Wei et al., 1995). 또한 DSCT 기둥은 그림 2에 나타낸 것과 같이 기둥의 내·외부 튜브에 의한 콘크리트 3축 구속효과와 파괴모 드에 대한 연구가 연구된바 있으며, 내부 튜브가 없는 경우에는 콘크리트 내벽에서 취성파괴가 일어날 수 있 지만, DSCT의 경우는 내부 튜브에 의한 구속효과가 더 해지면서 이러한 파괴를 막는 것을 확인할 수 있다(Han et al., 2010).

FRPFiber Reinforced Polymer는 섬유보강 폴리머로서 항공기 나 자동차에 사용되는 고강도 복합재료이며, 내부식성 이 강해 해양환경에서 적용이 가능하다.

이러한 FRP의 장점을 DSCT 구조에 접목하여 한국해 양과학기술원에서는 기존의 강재타워가 가지고 있는 좌 굴파괴 위험성을 저감하고, 해상풍력타워로의 적용이 가능한 신형식 풍력타워로서 FRP DSCT 풍력타워를 제 안하였다.

FRP DSCT 풍력타워의 단면설계

자동설계 프로그램 Auto DSCT

FRP DSCT 풍력타워의 단면설계는 한국해양과학기 술원에서 개발된 Auto DSCT 프로그램을 이용하여 가 능하며, 그림 3의 과정을 따라 타워의 단면을 설계한다 (Han, 2014). 타워의 제원과 재료에 대한 정보, 필요한 요구성능을 Auto DSCT에 입력하면 그에 따른 축력-휨 모멘트의 상관관계와 축력과 축 변위를 해석하여 필요

신형식 FRP DSCT 풍력타워의 단면설계와 해석 Section Design and Analysis of FRP DSCT Wind Tower

Section Design and Analysis of FRP DSCT Wind Towe

한 요구 강도를 만족하는 10개의 최적화된 기둥단면을 얻을 수 있다.

Auto DSCT는 먼저 초기 입력 자료를 바탕으로 Timoshenko와 Gere가 제안한 원통형 쉘의 국부좌 굴 강도식과 콘크리트구조기준 17.4.에서 제시하는 콘 크리트 심부를 둘러싸는 구조용 강재의 최소두께를 모 두 만족하도록 타워 외부 튜브의 최소두께를 계산한다 (Timoshenko and Gere, 1936; Korea Concrete Institute, 2012). 외부 튜브의 두께가 선정되면 중공비를 3%씩 변 화시켜 중공비 97%~70% 까지의 10개의 케이스를 고려 하여, 각각에 대한 최소 내부 튜브 두께를 산정하게 된 다. 산정된 내부 튜브의 두께를 다시 0.01mm씩 증가시 키면서 P-M 상관도를 분석하며, 최종적으로 요구성능 으로 입력된 축강도와 휨강도를 동시에 만족하는 10개 의 최적화된 단면을 도출한다. 이렇게 계산되어진 타워 의 단면 결과는 다양한 중공비를 가지고 있으며, 축강도 와 휨강도 역시 다양하게 도출되어. 그 목적과 적용성에 따라 선택적으로 사용이 가능하다(한택희 등, 2013).

FRP DSCT의 단면설계

FRP DSCT 풍력타워의 단면설계는 3MW 용량의 터 빈을 지지하는 타워에 대하여 실시하였다. 이를 위해 먼 저, 기존의 3MW급 터빈을 지지하기 위한 강재타워에 대한 제원과 요구강도를 조사하여 필요 강도에 만족하는

Norminal compressive strength of unconfined concrete	30 MPa		
Yield strength of outer tube	48.685 MPa		
Ultimate strength of outer tube	230.25 MPa		
Modulus of elasticity of outer tube	15436.7 MPa		
Ultimate strain of inner tube	0.0244		
Yield strength of inner tube	48.685 MPa		
Ultimate strength of inner tube	230.25 MPa		
Modulus of elasticity of inner tube	15436.7 MPa		
Ultimate strain of inner tube	0.0244		

H1. Input data in Auto DSCT

FRP DSCT 풍력타워의 단면을 설계하고자 하였다. 그 결과, 타워 상부에서의 요구 모멘트는 17,600kN-m, 타 워 하부에 요구되는 모멘트는 88,000kN-m로 나타났으 며extreme condition, 터빈 무게에 의한 축력은 2,835kN으로 조사되었다. 타워의 제원은 높이를 90m로 하였으며, 하 부 직경은 4.5m, 너셀부와의 연결을 고려한 타워의 상 부 직경은 3.6m로 선정하였다. 최적의 단면설계를 찾기 위하여 선정된 타워 하부의 직경 4.5m(D₀, Case01)를 시작으로 D₀대비 95%(4.275m, Case02), 90%(4.050m, Case03), 85%(3.825m, Case04)의 하부직경을 가지는 경우에 대하여 추가적으로 단면설계를 실시하였다. 타 워 상부의 직경은 앞서 언급한 바와 같이 너셀과 연결을 위해 확보해야하는 직경으로, 하부직경과는 다르게 일 정한 크기로 유지하여 단면을 설계하였다. Auto DSCT

Design Case	3F100/97	3F100/94	3F100/91	3F100/88	3F100/85	3F100/82	3F100/79	3F100/76	3F100/73	3F100/70
D	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500
Di	4365	4230	4095	3960	3825	3690	3555	3420	3285	3150
t	31	19.5	13	12	12	12	12	12	12	12
ti	36.386	27.966	22.105	20.538	19.838	19.138	18.437	17.737	17.037	16.337

H 1. Section design of Case01

Design Case	3F95/97	3F95/94	3F95/91	3F95/88	3F95/85	3F95/82	3F95/79	3F95/76	3F95/73	3F95/70
D	4275	4275	4275	4275	4275	4275	4275	4275	4275	4275
Di	4146.75	4018.5	3890.25	3762	3633.75	3505.5	3377.25	3249	3120.75	2992.5
t	36	24	17	13	11.5	11.5	11.5	11.5	11.5	12
ti	38.412	30.24	24.638	20.835	18.928	18.26	17.592	16.924	16.256	15.923

H 2. Section design of Case02

Design Case	3F90/97	3F90/94	3F90/91	3F90/88	3F90/85	3F90/82	3F90/79	3F90/76	3F90/73	3F90/70
D	4050	4050	4050	4050	4050	4050	4050	4050	4050	4050
Di	3928.5	3807	3685.5	3564	3442.5	3321	3199.5	3078	2956.5	2835
t	40	30	22	17.5	15	13.5	13	13	13.5	14
ti	42.68	32.907	27.281	23.529	21.041	19.257	18.205	17.514	17.143	16.74

<u>II</u> 3. Section design of Case03

Design Case	3F85/97	3F85/94	3F85/91	3F85/88	3F85/85	3F85/82	3F85/79	3F85/76	3F85/73	3F85/70
D	3825	3825	3825	3825	3825	3825	3825	3825	3825	3825
Di	3710.3	3595.5	3480.8	3366	3251.3	3136.5	3021.3	2907	2792.3	2677.5
t	44.5	35.5	28.5	23	19.5	17.5	17	16.5	16.5	17.5
ti	47.482	36.707	30.176	26.214	23.315	21.307	20.232	19.176	18.419	18.189

<u>H</u>4. Section design of Case04

입력에 필요한 재료 물성치를 표 1에 나타내었다.

Auto DSCT를 이용하여 계산된 FRP DSCT의 단면결 과를 표 2~표 5에 나타내었다. 각각의 케이스별로 10개 의 단면결과를 도출하였으며, D는 콘크리트 외부 직경, D_i는 콘크리트 내부 직경, t는 외부튜브의 두께, t_i는 내 부튜브의 두께를 의미한다. 디자인케이스는 tFd/H (예, 3F100/97)와 같이 나타내었으며, t는 터빈의 용량(3MW), F는 튜브 재료인 FRP, d는 직경비(D₀:100), 그리고 H는 중공비를 의미한다.

Auto DSCT는 앞서 언급한 바와 같이 10개의 단면 에 대한 P-M 상관도 결과를 도출하며, 그림 4~그림 7 에 나타내었다. 요구 모멘트를 적색 점선으로 나타내었 으며, 요구 모멘트 이상의 강도를 보이기 시작하는 단 면의 경우를 적색 표식을 붙여서 표시하였다. Case01 의 경우 중공비 88% 이하의 단면을 가지는 경우 요구성 능을 만족하는 것으로 나타났으며, Case02의 경우는 중 공비 85%이하, Case03은 중공비 82%이하, 마지막으로 Case04의 경우에는 중공비 79%이하의 FRP DSCT 타워 단면을 가지는 경우, 3MW 터빈을 지지하기 위한 요구 모멘트를 만족하는 것으로 나타났다.

FRP DSCT 풍력타워의 휨거동 해석

FRP DSCT 풍력타워의 휨거동에 대한 해석은 한국 해양과학기술원에서 개발한 비선형해석 프로그램인 CoWiTA를 이용하였다(Han, 2015). 해석에는 풍력터빈 운전 시 너셀 자중에 의해 추가로 모멘트가 발생하는 대 변위 효과를 고려하였으며, 그림 8에 이에 대한 모식도 를 나타내었다. 그림 8의 좌측과 같이 너셀의 자중은 평 상시에는 타워에 축력으로만 작용하지만, 그림 8의 우측 과 같이 풍력발전기가 운전 중인 경우, 추력(Pi)으로 인

Fig. 8 Large displacement effect

하여 횡변위(ΔN)가 발생하면서 터빈의 자중(WN)이 추가 적인 모멘트를 발생시킨다. CoWiTA를 이용한 해석 시, 이러한 대변위 효과에 의한 추가모멘트가 모두 고려되 었다.

Auto DSCT에 의하여 도출된 타워의 단면결과 중에 서 요구 모멘트에 대해 만족하는 결과를 선택하여 휨거 동 해석을 수행하였다. 그림 9~그림 12에 CoWiTA를 통해 얻은 Moment-curvature curve를 나타내었으며, 3MW 급 터빈을 지지하는데 필요한 요구 모멘트 값을 적색 점선으로 표시하였다. P-M 상관도 결과에서는 모 두 요구 모멘트를 만족했었지만, 대변위 효과를 고려하 였을 때에는 몇몇 케이스에서 만족하지 못하는 것으로 나타났다. P-M 상관도 분석에서 요구성능을 만족하는 결과 중, 가장 큰 중공비를 갖는 3F100/88과 3F95/85의 경우 CoWiTA 해석에서는 대변위 효과에 의한 추가 모 멘트로 인하여 요구 모멘트에 미치지 못하는 것으로 나 타났다. Case03의 경우에는 중공비 79%, 82%인 단면, Case04의 경우에는 중공비 73%, 76%, 79%인 단면결과 가 앞선 P-M 상관도 결과에서는 요구 모멘트를 만족하 였으나, 대변위 효과를 고려한 CoWiTA해석 결과에서 는 요구성능에 미치지 못하는 것으로 나타났다. 이로써 타워의 설계 시에는 대변위 효과에 의한 추가 모멘트는 반드시 고려되어야 함을 확인 할 수 있다.

맺음말

한국해양과학기술원에서는 섬유보강폴리머FRP 관을 적용한 DSCT 구조의 풍력타워를 제안하고, 이를 위한 자동설계 프로그램Auto DSCT과 해석 프로그램COWITA을 개 발하였다.

두 프로그램 모두 콘크리트의 구속효과와 재료비선형 을 고려하여 수행되었으며, 기존의 3MW 터빈을 지지하 는 강재타워와 동일한 직경과 더 작은 직경의 타워에 대 하여 단면 설계와 해석을 수행하였다.

자동설계 프로그램을 통해 얻은 10개의 단면 설계안 중에서 P-M 상관도 해석을 통해 요구 모멘트에 대하여 만족하는 결과를 선택하여 타워의 휨거동을 해석하였으 며, CoWiTA를 이용한 해석 시에는 대변위 효과가 고려 되었다.

선택된 설계안에 대하여 CoWiTA를 통해 해석을 수 행한 결과, 조사된 강재타워와 같은 직경의 FRP DSCT 는 요구 모멘트의 최대 180%까지 만족하는 것으로 나타

Fig. 9 Moment-Curvature Curves, Case01 Fig. 10 Moment-Curvature Curves, Case02 Fig. 11 Moment-Curvature Curves, Case03 Fig. 12 Moment-Curvature Curves, Case04

나 높은 강도를 보였다.

직경의 크기는 중공비에 따라 기존 강재타워 직경 대 비 최대 25%까지 감소가 가능한 것으로 나타났다. 이러 한 결과는 FRP DSCT 풍력타워가 기존의 강재타워에 비 해 더 작은 외경으로도 적용이 가능하며, 뛰어난 강도와 FRP의 내부식성으로 해상풍력타워로의 높은 적용 가능 성을 보일 것으로 기대된다.

감사의 글

본 연구는 국토교통부 건설교통기술촉진연구사업 의 연구비지원(과제번호 12기술혁신E09) 및 한국해양과 학기술원(KIOST)의 "조류에너지 융복합 발전기술 개발 (PE99421)"의 연구비 지원에 의해 수행되었으며, 이에 감 사드립니다. [▲]

● 참고문헌 references ●

- 1 Han, T.H. (2014) "Auto DSCT Manual Version 1.1", Korea Institute of Ocean Sciecne & Technology.
- **2** Han, T.H. (2015) "CoWiTA Manual Version 2.1", Korea Institute of Ocean Sciecne & Technology.
- **3** Han, T.H., Stallings, J.M., and Kang, Y.J. (2010) "Nonlinear concrete model for double-dkinned composite tubular columns", Construction and Building Materials, 24(12), pp. 2542-53.
- **4** Han, T.H., Won, D., and Kim, S. (2013) "Applicability of Double-Skinned Composite Tubular Member for Offshore Wind Turbine Tower", Journal of KOSHAM, 13(4), pp. 55-65.
- **5** Korea Concrete Institute. (2012) "Concrete Structure Design Code", Seoul
- 6 Shakir-Khalil, H. and Illouli, S. (1987) "Composite columns of concentric steel tubes", In Proceeding of conference on the design and construction of non conventional structures, pp. 73-82.
- 7 Timoshenko, S. P., and Gere, J. M. (1963) "Theory of Elastic Stability-2nd Edition", McGraw-Hill, Singapore.
- 8 Wei, S., Mau, S. T., Vipulanandan, C., and Mantrala, S. K. (1995) "Performance of new sandwich tube under axial loading: experiment", J Struct Eng, 121(12), pp. 1815-21.