DOI QR코드

DOI QR Code

Implementation of Polyacrylamide in the Agricultural Environment and its Recent Review

  • Choi, Yonghun (Disaster Prevention Division, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Minyoung (Disaster Prevention Division, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Youngjin (Disaster Prevention Division, National Institute of Agricultural Sciences, RDA) ;
  • Jeon, Jonggil (Disaster Prevention Division, National Institute of Agricultural Sciences, RDA) ;
  • Seo, Myungchul (Crop Production and Physiology Research Division, National Institute of Crop Science, RDA)
  • Received : 2016.08.26
  • Accepted : 2016.09.28
  • Published : 2016.10.31

Abstract

Nonpoint sources of pollution (NPS) is defined as diffuse discharges of pollutants (e.g., nutrient, pesticide, sediment, and enteric microorganism) throughout the natural environment and they are associated with a variety of farming practices. Previous studies found that water soluble anionic polyacrylamide (PAM) is one of the highly effective measures for enhancing infiltration, reducing runoff, preventing erosion, controlling nonpoint source of pollutants, and eventually protecting soil and water environment. Potential benefits of PAM treatment in agricultural soil and water environments have been revealed by many research and they include low cost, easy and quick application, and suitability for use with other Best Management Practices (BMPs) for NPS control. This study reviews the various applications of PAM and discusses its further potentials in agricultural environment.

Keywords

References

  1. Abu-Zreig, M., M. Al-Sharif, and J. Amayreh. 2007. Erosion control of arid land in Jordan with two anionic polyacrylamide. Arid Land Res. Manag. 21:315-328. https://doi.org/10.1080/15324980701603557
  2. Bai, G., C. Zou, S. Du, and Z. Ren. 2015. Effects of polyacrylamide on water use efficiency and output value of different crops in arid and semi-arid regions. Nongye Gongcheng Xuebao/Trans. of CSAE. 31:101-110.
  3. Barvenik, F.W. 1994. Polyacrylamide characteristics related to soil applications. Soil Sci. 158:235-243. https://doi.org/10.1097/00010694-199410000-00002
  4. Bhattacharjee, S., J.N. Ryan, and M. Elimelech. 2002. Virus transport in physically and geochemically heterogeneous subsurface porous media. J. of Contam. Hydrol. 57:161-187. https://doi.org/10.1016/S0169-7722(02)00007-4
  5. Bjorneberg, D.L., F.L. Santos, N.S. Castanheira, O.C. Martins, J.L. Reis, J.K. Aase, R.E. Sojka. 2003. Using polyacrylamdie with sprinkler irrigation to improve infiltration, J. Soil Water Conserv. 58:283-289.
  6. Choi, J.Y. 2006. Status and prospect of the non-point source control policy, KWRA. 39(12): 12-18.
  7. Choi, J.W., D.S. Shin, I.J. Kim, and K.J. Lim. 2011. Evaluation of runoff and sediment yield reduction with diversion ditch and vegetated swale using WEPP model, J. of KWRA. 44(11):863-873.
  8. Choi, Y.B., J.E. Lim, Y.S. Jung, S.S. Lee, and Y.S. Ok. 2012. Best management practices for sloping upland erosion control: feasibility of PAM and biopolymer application. J. of Agri. Life and Environ. Sci. 24(2):30-39.
  9. Choi, B.S., J.E. Lim, Y.B. Choi, K.J. Lim, J.D. Choi, J.H. Joo, J.E. Yang, and Y.S. Ok. 2009. Applicability of PAM (Polyacrylamide) in soil erosion prevention: rainfall simulation experiments. Korean Journal of Environmental Agriculture. 28(3):249-257. https://doi.org/10.5338/KJEA.2009.28.3.249
  10. Doran, J.W. and T.B. Parkin. 1996. Quantitative indicators of soil quality: a minimum data set. In: Doran, J.W., Jones, A.J. (Eds.), Methods for Assessing Soil Quality. SSSA, Special Publication 49. Madison, WI, pp. 25-37.
  11. Entry, J.A., I. Phillips, H. Stratton, and R.E. Sojka. 2003. Polyacrylamide+$Al(SO_4)_3$ and polyacrylamide+CaO remove coliform bacteria and nutrients from swine wastewater. Envir. Pollut. 121:453-462. https://doi.org/10.1016/S0269-7491(02)00225-7
  12. Entry, J.A., R.E. Sojka, M. Watwood, and C. Ross. 2002. Polyacrylamide preparations for protection of water quality threatened by agricultural runoff contaminants. Envir. Pollut. 120:191-200. https://doi.org/10.1016/S0269-7491(02)00160-4
  13. Flanagan, D.C., L.D. Norton, J.R. Peterson, and K. Chaudhari. 2003, Using polyacrylamide to control erosion on agricultural and disturbed soils in rainfed areas: advances in the use of polyacrylamide (PAM) for soil and water management. J. Soil Water Conserv. 58:301-311.
  14. Green, V.S., D.E. Stott, L.D. Norton, and J.G. Graveel. 2000. Polyacrylamide molecular weight and charge effects on infiltration under simulated rainfall. Soil Sci. Soc. Am. J. 64:1786-1791. https://doi.org/10.2136/sssaj2000.6451786x
  15. Hayes, S.A., R.A. McLaughlin, and D.L. Osmond. 2005. Polyacrylamide use for erosion and turbidity control on construction sites. J. Soil Water Conserv. 60(4):193-199.
  16. Kim, M.Y., S.H. Kim, S.B. Lee, and Y.H. Cho. 2014. Development of a hybrid best management practice system for control of agricultural nonpoint water pollution, J. Agric. Chem. Environ. 3:161-168.
  17. Kim, M.Y., I.H. Song, M.K. Kim, S.H. Kim, Y.J. Kim, Y.H. Choi, and M.C. Seo. 2015. Effect of Polyacrylamide application on water and nutrient movements in soils. J. Agric. Chem. Environ. 4:76-81.
  18. Kwon, K.S., K.J. Lee, B.J. Koo, and J.D. Choi. 2000. Effect of PAM on soil erosion from Alpine agricultural fields. J. Agr. Sci. 11:91-99.
  19. Laird, D.A. 1997. Bonding between Polyacrylamide and clay mineral surfaces. Soil Sci. 162(11):826-832. https://doi.org/10.1097/00010694-199711000-00006
  20. LeBissonnais, Y. 1996. Aggregate stability and assessment of soil crustability and erodibility: 1. Theory and methodology. Eur. J. Soil Sci. 47:425-437. https://doi.org/10.1111/j.1365-2389.1996.tb01843.x
  21. Lee, S.B., M.Y. Kim, S.H. Kim, S.H. Yum. 2010. Reduction of sediment discharge from a paddy field. Proceedings of the 2010 KSAE Annual Conference, October 15-16, Konkuk University, Korea.
  22. Lentz, R.D. and R.E. Sjoka. 1994. Field results using polyacrylamide to manage furrow erosion and infiltration. Soil Sci. 158:274-282. https://doi.org/10.1097/00010694-199410000-00007
  23. Lentz, R.D. and R.E. Sojka. 1996. Polyacrylamide application to control furrow irrigation-induced erosion. Proceedings of the 27th International Erosion Control Association meetings, pages 419-430. Seattle Washington, 27 Feb.-1 Mar., 1996.
  24. Lentz, R.D. and R.E. Sojka. 2009. Long-term polyacrylamide formulation effects on soil erosion, water infiltration, and yields of furrow-irrigated crops. Agron. J. 101:305-314. https://doi.org/10.2134/agronj2008.0100x
  25. Lentz, R.D. and R.E. Sojka. 1994. Field results using polyacrylamide to manage furrow erosion and infiltration. Soil Sci. 158:274-282. https://doi.org/10.1097/00010694-199410000-00007
  26. Lentz, R.D., I. Shainberg, R.E. Sojka, and D.L. Carter. 1992. Preventing irrigation furrow erosion with small applications of polymers. Soil Sci. Soc. Am. J. 56:1926-1932. https://doi.org/10.2136/sssaj1992.03615995005600060046x
  27. Levy, G.J. and M. Agassi. 1995. Polymer molecular weight and degree of drying effects on infiltration and erosion of three different soils. Australian J. of Soil Res. 33:1007-1018. https://doi.org/10.1071/SR9951007
  28. Levy, G.J., J. Levin, M. Gal, M. Ben-Hur, and I. Shainberg. 1992. Polymers' effects on infiltration and soil erosion during consecutive simulated sprinkler irrigation. Soil Sci. Soc. Am. J. 56:902-907. https://doi.org/10.2136/sssaj1992.03615995005600030037x
  29. McCutchan, H., P. Osterli, and J. Letey. 1994. Polymers check furrow erosion, help river life. Calif. Ag. 47:10-11.
  30. McElhiney, M. and P. Osterli. 1996. An integrated approach for water quality: the PAM connectin pp. 27-30. In: Sojka, R.E., and R.D. Lentz (eds.) Proceedings: Managing irrigation-induced erosion and infiltration with Polyacrylamide. May 6-8, 1966. University of Idaho Miscellaneous Publication. 101-96. College of Southern Idaho, Twin Falls, Idaho.
  31. McIntyre, D.S. 1958. Soil splash and the formation of surface crusts by raindrop impact. Soil Sci. 85:261-266. https://doi.org/10.1097/00010694-195805000-00005
  32. Movahedan, M., N. Abbasi, and M. Keramati. 2012. Wind erosion control of soils using polymeric materials, Eurasian J. of Soil Sci. 2:81-86.
  33. Ministry of Environment. 2012. Nonpoint Source Management Program. Sejong, Korea.
  34. Ministry of Environment. 2013. Top soil conservation plan. Sejong, Korea.
  35. Ministry of Environment. 2014. Installation and management guideline of nonpoint source pollution control, Sejong, Korea.
  36. Nadler, A., M. Malik, and J. Letey. 1992. Desorption of polyacrylamide and polysaccharide polymers from soil materials. Soil Technol. 5:91-95. https://doi.org/10.1016/0933-3630(92)90010-X
  37. National Institute of Environmental Research. 2011. Model development for assessing the effect of Best Management Practice for non-point source management area. Incheon, Korea.
  38. National Institute of Forest Science. 2010. Soil management technique. Seoul, Korea.
  39. Norton, D. and K. Dontsova. 1998. Use of soil amendments to prevent soil surface sealing and control erosion. Adv. GeoEcology. 31:581-587.
  40. Norton, L.D., I. Shainberg, and K.W. King. 1993. Utilization of gypsiferous amendments to reduce surface sealing in some humid soils of the eastern USA. P. 77-92. In J.W.A. Poesen and M.A. Nearing (ed.) Soil surface sealing and crusting. Catena Suppl. 24, Catena Verlag, Crmlingen-Destedt, Germany.
  41. NRCS. 2011. Anionic Polyacrylamide (PAM) application. Natural Resources Conservation Service, Conservation Practice Standard. 1-3.
  42. Park, J.W., Y.H. Choi, M.H. Shin, C.H. Won, K.W. Park, and J.D. Choi. 2011. Evaluation of feasibility of System of Rice Intensification (SRI) for reduction of irrigation water in South Korea. J. Korean Soc. Agric. Environ. 53(4):49-57.
  43. Park, J.Y., C.G. Jung, I.K. Jung, J.W. Lee, H.J. Shin, S.J. Kim. 2010. A study on the reduction of non-point source pollution by applying Best Management Practices using SWAT model. J. Agri. Life Sci. 32(2): 59-64.
  44. Ross, C.W., R.E. Sojka, and J.A. Foerster. 2003. Scanning electron micrographs of polyacrylamide-treated soil in irrigation furrows. J. Soil Water Conserv. 58(5):327-331.
  45. Rubio, H.O., M.K. Wood, M. Cardenas, and B.A. Buchanan. 1992. The effect of polyacrylamide on grass emergence in South-Central New-Mexico. J. Range Mange. 45:296-300. https://doi.org/10.2307/4002981
  46. Rural Research Institute. 2011. Collection of Best Management Practices for controlling agricultural nonpoint source pollution. Ansan, Korea.
  47. Shainberg, I. and G.J. Levy. 1994. Organic polymers and soil sealing in cultivated soils. Soil Sci. 158:267-273. https://doi.org/10.1097/00010694-199410000-00006
  48. Shainberg, I. and J.M. Singer. 1985. Effect of electrolyte concentration on the hydraulic properties of depositional crust. Soil Sci. Soc. Am J. 49:1260-1263. https://doi.org/10.2136/sssaj1985.03615995004900050038x
  49. Shainberg, I., D.N. Warrington, and P. Rengasamy. 1990. Water quality and PAM interactions in reducing surface sealing. Soil Sci. 149:301-307. https://doi.org/10.1097/00010694-199005000-00007
  50. Shin, M.H., J.R. Jang, H.J. Shin, D.H. Kum, Y.H. Choi, C.H. Won, K.J. Lim, and J.D. Choi. 2013. Application of surface cover materials and soil amendments for reduction of non-point source pollution from upland fields. J. of KSAE. 55(4):21-28.
  51. Sojka, R.E. and J.A. Entry. 2000. Influence of polyacrylamide application to soil on movement of microorganisms in runoff water. Environ. Pollut. 108:405-412. https://doi.org/10.1016/S0269-7491(99)00194-3
  52. Sojka, R.E., D.L. Bjorneberg, J.A. Entry, R.D. Lentz, and W.J. Orts. 2007. Polyacrylamide in agriculture and environmental land management. Adv. Agron. 92:75-162. https://doi.org/10.1016/S0065-2113(04)92002-0
  53. Sojka, R.E. and R.D. Lentz. 1997. Reducing furrow irrigation erosion with polyacrylamide (PAM). J. of Produc. Agri. 10(1):47-52. https://doi.org/10.2134/jpa1997.0047
  54. Sojka, R.E. and R.D. Lentz. 1994a. Polyacrylamide (PAM): A new weapon in the fight against irrigation-induced erosion. USDA-ARS Northwest irrigation and soils research laboratory station Note #01-94.
  55. Stern, R., A.J.V.D. Merwe, M.C. Laker, and I. Shainberg. 1992. Effect of soil surface treatments on runoff and wheat yields under irrigation. Agron. J. 84:114-119. https://doi.org/10.2134/agronj1992.00021962008400010022x
  56. Trout, TJ., R.E. Sojka, and R.D. Lentz. 1995. Polyacrylamide effect on furrow erosion and infiltration. Trans. of ASAE. 38(3):761-765. https://doi.org/10.13031/2013.27889
  57. Wallace, A., G.A. Wallace, and A.M. Abouzamzam. 1986. Effects of soil conditioners on water relationship in soils. Soil Sci. 141(5):346-352. https://doi.org/10.1097/00010694-198605000-00009
  58. Wang, A.P., F.H. Li, and S.M. Yang. 2011. Effect of polyacrylamide application on runoff, erosion, and soil nutrient loss under simulated rainfall. Pedosphere. 21(5):628-638. https://doi.org/10.1016/S1002-0160(11)60165-3
  59. Weston, D.P., R.D. Lentz, M.D. Cahn, R.D. Ogle, A.K. Rothert, and M.J. Lydy. 2009m Toxicity of anionic polyacrylamide formulations when used for erosion control in agriculture. J. Environ. Qual. 38:238-247. https://doi.org/10.2134/jeq2008.0109
  60. Wong, T.P. 2001. Polyacrylamide (PAM) effects on viruses and bacteria transport in an unsaturated Oxisol, M.S. thesis. The University of Hawaii.
  61. Wu, L., Y.S. Ok, X.L. Xu, and Y. Kuzyakov. 2012, Effects of anionic polyacrylamide on maize growth: a short term 14C labeling study. Plant Soil. 350(1):311-322. https://doi.org/10.1007/s11104-011-0911-y
  62. Xindong, W., Y. Xuefeng, L. Yumei, W. Youke, and Y. Xuefeng. 2011. Research on the water-saving and yield-increasing effect of polyacrylamide. Procedia Environ. Sci. 11(B):573-580. https://doi.org/10.1016/j.proenv.2011.12.090
  63. Yoon, J.H., D.K. Kang, S.S. Cho, and H.S. Kim. 2003. Soil erosion of tillage and the plan for reducing of turbid-water occurrence. Joint conference of the Korean Society of Water & Wastewater and Journal of Korean Society on Water Environment. pp. 55-58.
  64. Zhuang. J. and Y. Jin. 2008. Interactions between viruses and goethite during saturated flow: Effects of solution pH, carbonate, and phosphate. J. of Contam. Hydrol. 98(1-2):15-21. https://doi.org/10.1016/j.jconhyd.2008.02.002