DOI QR코드

DOI QR Code

니켈기 초내열합금의 열간노출에 따른 미세조직 및 기계적 특성 변화

Evolution of Microstructure and Mechanical Properties of a Ni Base Superalloy during Thermal Exposure

  • 김인수 (한국기계연구원 부설 재료연구소 내열재료연구실) ;
  • 최백규 (한국기계연구원 부설 재료연구소 내열재료연구실) ;
  • 정중은 (한국기계연구원 부설 재료연구소 내열재료연구실) ;
  • 도정현 (한국기계연구원 부설 재료연구소 내열재료연구실) ;
  • 정인용 (한국기계연구원 부설 재료연구소 내열재료연구실) ;
  • 조창용 (한국기계연구원 부설 재료연구소 내열재료연구실)
  • Kim, In-Soo (High tmeperature Materials Department, Kora Institute of materials Science) ;
  • Choi, Baig-Gyu (High tmeperature Materials Department, Kora Institute of materials Science) ;
  • Jung, Joong-Eun (High tmeperature Materials Department, Kora Institute of materials Science) ;
  • Do, Jeong-Hyeon (High tmeperature Materials Department, Kora Institute of materials Science) ;
  • Jung, In-Yong (High tmeperature Materials Department, Kora Institute of materials Science) ;
  • Jo, Chang-Yong (High tmeperature Materials Department, Kora Institute of materials Science)
  • 투고 : 2016.09.21
  • 심사 : 2016.10.14
  • 발행 : 2016.10.31

초록

The microstructural evolution of a cast Ni base superalloy, IN738LC, has been investigated after long term exposure at several temperatures. Most of the fine secondary ${\gamma}^{\prime}$ particles resolved after 2000 hour exposure at $816^{\circ}C$. At higher temperatures of $871^{\circ}C$ and $927^{\circ}C$, secondary ${\gamma}^{\prime}$ resolved after 1000 hours of exposure, and cuboidal primary ${\gamma}^{\prime}$ grew with exposure time. During the thermal exposure, ${\sigma}$ phase formed at all tested temperatures, and ${\eta}$ phase was observed around interdendritic regions due to carbide degeneration. The influence of microstructural evolution during thermal exposure on the mechanical properties has been analyzed. The effects of ${\gamma}^{\prime}$ particle growth are more pronounced on the high temperature creep properties than on the room temperature tensile properties.

키워드

참고문헌

  1. R. A. Stevens and P. E. J. Flewitt, Mater. Sci. and Eng., "Intermediate regenerative heat treatments for exending the creep life of the superalloy IN-738", 50 (1981) 271-284. https://doi.org/10.1016/0025-5416(81)90186-5
  2. E. Balikci, R. A. Mirshams and A. Raman, Mater. Sci. and Eng. A, "Fracture behavior of superalloy IN738LC with various precipitate microstructures", A265 (1999) 50-62.
  3. N. El-Bagoury, M. Waly and A Nafal, Mater. Sci. and Eng. A, "Effect of various heat treatment conditions on microstructure of cast polycrystalline IN738CL alloy", A487 (2008) 152-161.
  4. K. Banerjee, N. L. Richards and M. C. Chaturvedi, Metall. and Mater. Trans. A, "Effect of filler alloys on heat-affected zone cracking in preweld heat-treated IN738LC gas-tungstenarc welds", 36A (2005) 1881-1890.
  5. Huang Xuebing, Kang Yan, Zhou Huihua, Zhang Yun and Hu Zhangqi, Mater. Letters, "Influence of heat treatment on the microstructure of a unidirectional Ni-base superalloy", 36 (1998) 210-213. https://doi.org/10.1016/S0167-577X(98)00028-7
  6. E. Lvova, J. of Mater. Eng. and Perform., "A comparision of aging kinetics of new and rejuvenated conventionally cast GTD-111 gas turbine blades", 16(2) (2007) 254-264. https://doi.org/10.1007/s11665-007-9046-y
  7. R. S. Moshtaghin and S. Asgari, Mater. and Design, "Growth kinetics of ${\gamma}^{\prime}$ precipitates in superalloy IN738LC during long term aging", 24 (2003) 325-330. https://doi.org/10.1016/S0261-3069(03)00061-X
  8. R. S. Moshatghin and S. Asgari, J. of Alloys and compounds, " The effect of thermal exposure on the ${\gamma}^{\prime}$ characteristics in a Ni-base superalloy", 368 (2004) 144-151. https://doi.org/10.1016/S0925-8388(03)00699-6
  9. X. Li, N. Saunders and A. P. Miodownik, Metall. and Mater. Trans. A, "The Coarsening kinetics of ${\gamma}^{\prime}$ particles in Ni-based alloys", 33A (2002) 3367-3373.
  10. R. A. Stevens and P. E. J. Flewitt, Acta Metll., "The dependence of creep rate on microstructure in a ${\gamma}^{\prime}$ strengthened superalloy", 29 (1981) 867-882. https://doi.org/10.1016/0001-6160(81)90129-2
  11. E. Balikci, R. A. Mirshams and A. Raman, J. of Mater. Eng. and Perform., "Tensile strengthening in the nickel-base superalloy IN738LC", 9(3) (2000) 324-329. https://doi.org/10.1361/105994900770345999
  12. C.-N. Wei, H.-Y. Bor and L. Chang, J. of Alloys and Comp., "The influence of carbon addition on carbide characteristics and mechanical properties of CM-681LC superalloy using fine-grain process" 509 (2011) 5708-5714. https://doi.org/10.1016/j.jallcom.2011.02.146
  13. L. R. Liu, T. Jin, N. R. Zhao, X. F. Sun, H. R. Guan and Z. Q. Hu, Mater. Sci. and Eng. A, "Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy", A361 (2003) 192-197.
  14. Choi BG, Kim IS, Kim DH and Jo CY, Mater. Sci. and Eng. A, "Temperature dependence of MC decomposition behavior in Ni-base superalloy GTD-111", A478 (2008) 329-335.
  15. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids, "The kinetics of precipitation from supersaturated solid solutions", 19 (1961) 35-50. https://doi.org/10.1016/0022-3697(61)90054-3
  16. C. Wagner, Z. Elektrochem., "Theroy of precipitate change by redissolution", 65 (1965) 581-591.
  17. J. Tiley, G. B. Viswanathan, R. Srinivasan, R. Banerjee, D. M. Dimiduk and H. L. Fraser, Acta Mater., "Coarsening kinetics of ${\gamma}^{\prime}$ precipitates in the commercial nickel base superalloy Rene 88 DT", 57(8) (2009) 2538-2549. https://doi.org/10.1016/j.actamat.2009.02.010

피인용 문헌

  1. 항공기엔진용 1단계 터빈블레이드에 대한 파손 연구 vol.46, pp.10, 2016, https://doi.org/10.5139/jksas.2018.46.10.806