References
- Choi, Y.E., Butterworth, M., Malladi, S., Duckett, C.S., Cohen, G.M., and Bratton, S.B. (2009). The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7, via unique mechanisms at distinct steps in their processing. J. Biol. Chem. 284, 12772-12782. https://doi.org/10.1074/jbc.M807550200
- DeHaan, R.D., Yazlovitskaya, E.M., and Persons, D.L. (2001). Regulation of p53 target gene expression by cisplatin-induced extracellular signal-regulated kinase. Cancer Chemother Pharmacol. 48, 383-388. https://doi.org/10.1007/s002800100318
- Elder, D.J., Halton, D.E., Playle, L.C., and Paraskeva, C. (2002). The MEK/ERK pathway mediates COX-2-selective NSAID-induced apoptosis and induced COX-2 protein expression in colorectal carcinoma cells. Int. J. Cancer 99, 323-327. https://doi.org/10.1002/ijc.10330
- Galve-Roperh, I., Sanchez, C., Cortes, M.L., Gomez del Pulgar, T., Izquierdo, M., and Guzman, M. (2000). Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat. Med. 6, 313-319. https://doi.org/10.1038/73171
- Goillot, E., Raingeaud, J., Ranger, A., Tepper, R.I., Davis, R.J., Harlow, E., and Sanchez, I. (1997). Mitogen-activated protein kinase-mediated Fas apoptotic signaling pathway. Proc. Natl. Acad. Sci. USA 94, 3302-3307. https://doi.org/10.1073/pnas.94.7.3302
- Hartgrink, H.H., Jansen, E.P., van Grieken, N.C., and van de Velde, C.J. (2009). Gastric cancer. Lancet 374, 477-490. https://doi.org/10.1016/S0140-6736(09)60617-6
- Hoshiyama, Y., and Sasaba, T. (1992). A case-control study of stomach cancer and its relation to diet, cigarettes, and alcohol consumption in Saitama Prefecture, Japan. Cancer Causes Control. 3, 441-448. https://doi.org/10.1007/BF00051357
- Hsu, Y.L., Kuo, P.L., Lin, L.T., and Lin, C.C. (2005). Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells. J. Pharmacol. Exp. Ther. 313, 333-344.
- Hwang, J., Wang, J., Morazzoni, P., Hodis, H.N., and Sevanian, A. (2003). The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: an antioxidant mechanism for cell-mediated LDL modification. Free Radic. Biol. Med. 34, 1271-1282. https://doi.org/10.1016/S0891-5849(03)00104-7
- Kelloff, G.J., Crowell, J.A., Steele, V.E., Lubet, R.A., Malone, W.A., Boone, C.W., Kopelovich, L., Hawk, E.T., Lieberman, R., Lawrence, J.A., et al. (2000). Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J. Nutr. 130, 467S-471S. https://doi.org/10.1093/jn/130.2.467S
- Kim, H.J., Chang, W.K., Kim, M.K., Lee, S.S., and Choi, B.Y. (2002). Dietary factors and gastric cancer in Korea: a case-control study. Int. J. Cancer 97, 531-535. https://doi.org/10.1002/ijc.10111
- Kim, Y.H., Lee, D.H., Jeong, J.H., Guo, Z.S., and Lee, Y.J. (2008). Quercetin augments TRAIL-induced apoptotic death: involvement of the ERK signal transduction pathway. Biochem. Pharmacol. 75, 1946-1958. https://doi.org/10.1016/j.bcp.2008.02.016
- Ko, K.P., Park, S.K., Park, B., Yang, J.J., Cho, L.Y., Kang, C., Kim, C.S., Gwack, J., Shin, A., Kim, Y., et al. (2010). Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean Multicenter Cancer Cohort. Cancer Epidemiol. Biomarkers Prev. 19, 1292-1300. https://doi.org/10.1158/1055-9965.EPI-09-1004
- Kulathila, R., Vash, B., Sage, D., Cornell-Kennon, S., Wright, K., Koehn, J., Stams, T., Clark, K., and Price, A. (2009). The structure of the BIR3 domain of cIAP1 in complex with the N-terminal peptides of SMAC and caspase-9. Acta Crystallogr. D Biol. Crystallogr. 65, 58-66. https://doi.org/10.1107/S0907444908039243
- Li, H., Wang, X., Li, N., Qiu, J., Zhang, Y., and Cao, X. (2007). hPEBP4 resists TRAIL-induced apoptosis of human prostate cancer cells by activating Akt and deactivating ERK1/2 pathways. J. Biol. Chem. 282, 4943-4950. https://doi.org/10.1074/jbc.M609494200
- Li, S., Dong, P., Wang, J., Zhang, J., Gu, J., Wu, X., Wu, W., Fei, X., Zhang, Z., Wang, Y., et al. (2010). Icariin, a natural flavonol glycoside, induces apoptosis in human hepatoma SMMC-7721 cells via a ROS/JNK-dependent mitochondrial pathway. Cancer Lett. 298, 222-230. https://doi.org/10.1016/j.canlet.2010.07.009
- Miyoshi, N., Uchida, K., Osawa, T., and Nakamura, Y. (2004). A link between benzyl isothiocyanate-induced cell cycle arrest and apoptosis: involvement of mitogen-activated protein kinases in the Bcl-2 phosphorylation. Cancer Res. 64, 2134-2142. https://doi.org/10.1158/0008-5472.CAN-03-2296
- Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K., and Cobb, M.H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153-183.
- Pumiglia, K.M., and Decker, S.J. (1997). Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 94, 448-452. https://doi.org/10.1073/pnas.94.2.448
- Remacle-Bonnet, M.M., Garrouste, F.L., Heller, S., Andre, F., Marvaldi, J.L., and Pommier, G.J. (2000). Insulin-like growth factor-I protects colon cancer cells from death factor-induced apoptosis by potentiating tumor necrosis factor alpha-induced mitogen-activated protein kinase and nuclear factor kappaB signaling pathways. Cancer Res. 60, 2007-2017.
- Rufer, C.E., and Kulling, S.E. (2006). Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J. Agric. Food Chem. 54, 2926-2931. https://doi.org/10.1021/jf053112o
- Sarfaraz, S., Afaq, F., Adhami, V.M., Malik, A., and Mukhtar, H. (2006) Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. J. Biol. Chem. 281, 39480-39491. https://doi.org/10.1074/jbc.M603495200
- Slee, E.A., Keogh, S.A., and Martin, S.J. (2000). Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ. 7, 556-565. https://doi.org/10.1038/sj.cdd.4400689
- Stanciu, M., Wang, Y., Kentor, R., Burke, N., Watkins, S., Kress, G., Reynolds, I., Klann, E., Angiolieri, M.R., Johnson, J.W., et al. (2000). Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J. Biol. Chem. 275, 12200-12206. https://doi.org/10.1074/jbc.275.16.12200
- Sun, S.Y., Hail, N., Jr., and Lotan, R. (2004). Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst. 96, 662-672. https://doi.org/10.1093/jnci/djh123
- Wu, A.H., Yang, D., and Pike, M.C. (2000). A meta-analysis of soyfoods and risk of stomach cancer: the problem of potential confounders. Cancer Epidemiol. Biomarkers Prev. 9, 1051-1058.
- Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., and Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331. https://doi.org/10.1126/science.270.5240.1326
- Yang, T.Y., Chang, G.C., Chen, K.C., Hung, H.W., Hsu, K.H., Sheu, G.T., and Hsu, S.L. (2011). Sustained activation of ERK and Cdk2/cyclin-A signaling pathway by pemetrexed leading to Sphase arrest and apoptosis in human non-small cell lung cancer A549 cells. Eur. J. Pharmacol. 663, 17-26. https://doi.org/10.1016/j.ejphar.2011.04.057
- Yang, Z.P., Zhao, Y., Huang, F., Chen, J., Yao, Y.H., Li, J., and Wu, X.N. (2015). Equol inhibits proliferation of human gastric carcinoma cells via modulating Akt pathway. World J. Gastroenterol. 21, 10385-10399. https://doi.org/10.3748/wjg.v21.i36.10385
- Zhu, H., Zhang, L., Wu, S., Teraishi, F., Davis, J.J., Jacob, D., and Fang, B. (2004). Induction of S-phase arrest and p21 overexpression by a small molecule 2[[3-(2,3-dichlorophenoxy)propyl] amino]ethanol in correlation with activation of ERK. Oncogene 23, 4984-4992. https://doi.org/10.1038/sj.onc.1207645
Cited by
- Sphingosine-1-phosphate suppresses chondrosarcoma metastasis by upregulation of tissue inhibitor of metalloproteinase 3 through suppressing miR-101 expression 2017, https://doi.org/10.1002/1878-0261.12106
- Biatractylolide Modulates PI3K-Akt-GSK3β-Dependent Pathways to Protect against Glutamate-Induced Cell Damage in PC12 and SH-SY5Y Cells vol.2017, 2017, https://doi.org/10.1155/2017/1291458
- TGF-β suppresses RasGRP1 expression and supports regulatory T cell resistance against p53-induced CD28-dependent T-cell apoptosis pp.00142980, 2018, https://doi.org/10.1002/eji.201847587
- SLC25A22 promotes proliferation and metastasis by activating MAPK/ERK pathway in gallbladder cancer vol.19, pp.1, 2019, https://doi.org/10.1186/s12935-019-0746-9
- Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects vol.11, pp.9, 2016, https://doi.org/10.3390/nu11092231
- Advances in exploring equol production and application vol.43, pp.11, 2019, https://doi.org/10.1111/jfpp.14205
- Equol: A Microbiota Metabolite Able to Alleviate the Negative Effects of Zearalenone during In Vitro Culture of Ovine Preantral Follicles vol.11, pp.11, 2019, https://doi.org/10.3390/toxins11110652
- Bacterial metabolism as responsible of beneficial effects of phytoestrogens on human health vol.60, pp.11, 2016, https://doi.org/10.1080/10408398.2019.1622505
- p-MEK expression predicts prognosis of patients with adenocarcinoma of esophagogastric junction (AEG) and plays a role in anti-AEG efficacy of Huaier vol.165, pp.None, 2021, https://doi.org/10.1016/j.phrs.2020.105411
- Saikosaponin-A induces apoptosis of cervical cancer through mitochondria- and endoplasmic reticulum stress-dependent pathway in vitro and in vivo: involvement of PI3K/AKT signaling pathway vol.20, pp.21, 2021, https://doi.org/10.1080/15384101.2021.1974791