DOI QR코드

DOI QR Code

Genetic Variations Leading to Familial Dilated Cardiomyopathy

  • Cho, Kae Won (Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University) ;
  • Lee, Jongsung (Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Kim, Youngjo (Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University)
  • 투고 : 2016.03.14
  • 심사 : 2016.10.28
  • 발행 : 2016.10.31

초록

Cardiomyopathy is a major cause of death worldwide. Based on pathohistological abnormalities and clinical manifestation, cardiomyopathies are categorized into several groups: hypertrophic, dilated, restricted, arrhythmogenic right ventricular, and unclassified. Dilated cardiomyopathy, which is characterized by dilation of the left ventricle and systolic dysfunction, is the most severe and prevalent form of cardiomyopathy and usually requires heart transplantation. Its etiology remains unclear. Recent genetic studies of single gene mutations have provided significant insights into the complex processes of cardiac dysfunction. To date, over 40 genes have been demonstrated to contribute to dilated cardiomyopathy. With advances in genetic screening techniques, novel genes associated with this disease are continuously being identified. The respective gene products can be classified into several functional groups such as sarcomere proteins, structural proteins, ion channels, and nuclear envelope proteins. Nuclear envelope proteins are emerging as potential molecular targets in dilated cardiomyopathy. Because they are not directly associated with contractile force generation and transmission, the molecular pathways through which these proteins cause cardiac muscle disorder remain unclear. However, nuclear envelope proteins are involved in many essential cellular processes. Therefore, integrating apparently distinct cellular processes is of great interest in elucidating the etiology of dilated cardiomyopathy. In this mini review, we summarize the genetic factors associated with dilated cardiomyopathy and discuss their cellular functions.

키워드

참고문헌

  1. Arimura, T., Helbling-Leclerc, A., Massart, C., Varnous, S., Niel, F., Lacene, E., Fromes, Y., Toussaint, M., Mura, A.M., Keller, D.I., et al. (2005). Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum. Mol. Genet. 14, 155-169. https://doi.org/10.1093/hmg/ddi017
  2. Badorff, C., Lee, G.H., Lamphear, B.J., Martone, M.E., Campbell, K.P., Rhoads, R.E., and Knowlton, K.U. (1999). Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat. Med. 5, 320-326. https://doi.org/10.1038/6543
  3. Bang, M.L., Centner, T., Fornoff, F., Geach, A.J., Gotthardt, M., McNabb, M., Witt, C.C., Labeit, D., Gregorio, C.C., Granzier, H., et al. (2001). The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-disc to I-band linking system. Circ Res. 89, 1065-1072. https://doi.org/10.1161/hh2301.100981
  4. Berko, B.A., and Swift, M. (1987). X-linked dilated cardiomyopathy. N Engl. J. Med. 316, 1186-1191. https://doi.org/10.1056/NEJM198705073161904
  5. Bienengraeber, M., Olson, T.M., Selivanov, V.A., Kathmann, E.C., O'Cochlain, F., Gao, F., Karger, A.B., Ballew, J.D., Hodgson, D.M., Zingman, L.V., et al. (2004). ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat. Genet. 36, 382-387. https://doi.org/10.1038/ng1329
  6. Bonne, G., Di Barletta, M.R., Varnous, S., Becane, H.M., Hammouda, E.H., Merlini, L., Muntoni, F., Greenberg, C.R., Gary, F., Urtizberea, J.A., et al. (1999). Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Genet. 21, 285-288. https://doi.org/10.1038/6799
  7. Bonne, G., Mercuri, E., Muchir, A., Urtizberea, A., Becane, H.M., Recan, D., Merlini, L., Wehnert, M., Boor, R., Reuner, U., et al. (2000). Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann. Neurol. 48, 170-180. https://doi.org/10.1002/1531-8249(200008)48:2<170::AID-ANA6>3.0.CO;2-J
  8. Burke, B., and Gerace, L. (1986). A cell free system to study reassembly of the nuclear envelope at the end of mitosis. Cell 44, 639-652. https://doi.org/10.1016/0092-8674(86)90273-4
  9. Butin-Israeli, V., Adam, S.A., Goldman, A.E., and Goldman, R.D. (2012). Nuclear lamin functions and disease. Trends Genet. 28, 464-471. https://doi.org/10.1016/j.tig.2012.06.001
  10. Cao, H., and Hegele, R.A. (2000). Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 9, 109-112. https://doi.org/10.1093/hmg/9.1.109
  11. Choi, J.C., Muchir, A., Wu, W., Iwata, S., Homma, S., Morrow, J.P., and Worman, H.J. (2012). Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation. Sci. Transl. Med. 4, 144ra102. https://doi.org/10.1126/scitranslmed.3003875
  12. Codd, M.B., Sugrue, D.D., Gersh, B.J., and Melton, L.J., 3rd (1989). Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975-1984. Circulation 80, 564-572. https://doi.org/10.1161/01.CIR.80.3.564
  13. Debold, E.P., Schmitt, J.P., Patlak, J.B., Beck, S.E., Moore, J.R., Seidman, J.G., Seidman, C., and Warshaw, D.M. (2007). Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse alpha-cardiac myosin in the laser trap assay. Am. J. Physiol. Heart Circ. Physiol. 293, H284-291. https://doi.org/10.1152/ajpheart.00128.2007
  14. Dellefave, L., and McNally, E.M. (2010). The genetics of dilated cardiomyopathy. Curr. Opin. Cardiol. 25, 198-204. https://doi.org/10.1097/HCO.0b013e328337ba52
  15. Emery, A.E. (2000). Emery-Dreifuss muscular dystrophy - a 40 year retrospective. Neuromuscul. Disord.10, 228-232. https://doi.org/10.1016/S0960-8966(00)00105-X
  16. Fatkin, D., MacRae, C., Sasaki, T., Wolff, M.R., Porcu, M., Frenneaux, M., Atherton, J., Vidaillet, H.J., Jr., Spudich, S., De Girolami, U., et al. (1999). Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl. J. Med. 341, 1715-1724. https://doi.org/10.1056/NEJM199912023412302
  17. Fatkin, D., Seidman, C.E., and Seidman, J.G. (2014). Genetics and disease of ventricular muscle. Cold Spring Harb. Perspect. Med. 4, a021063. https://doi.org/10.1101/cshperspect.a021063
  18. Gerace, L., and Blobel, G. (1980). The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell 19, 277-287. https://doi.org/10.1016/0092-8674(80)90409-2
  19. Herman, D.S., Lam, L., Taylor, M.R., Wang, L., Teekakirikul, P., Christodoulou, D., Conner, L., DePalma, S.R., McDonough, B., Sparks, E., et al. (2012). Truncations of titin causing dilated cardiomyopathy. N Engl. J. Med. 366, 619-628. https://doi.org/10.1056/NEJMoa1110186
  20. Itoh-Satoh, M., Hayashi, T., Nishi, H., Koga, Y., Arimura, T., Koyanagi, T., Takahashi, M., Hohda, S., Ueda, K., Nouchi, T., et al. (2002). Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 291, 385-393. https://doi.org/10.1006/bbrc.2002.6448
  21. Kamdar, F., and Garry, D.J. (2016). Dystrophin-deficient cardiomyopathy. J. Am. Coll. Cardiol. 67, 2533-2546. https://doi.org/10.1016/j.jacc.2016.02.081
  22. Kamisago, M., Sharma, S.D., DePalma, S.R., Solomon, S., Sharma, P., McDonough, B., Smoot, L., Mullen, M.P., Woolf, P.K., Wigle, E.D., et al. (2000). Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl. J. Med. 343, 1688-1696. https://doi.org/10.1056/NEJM200012073432304
  23. Kubben, N., Voncken, J.W., Konings, G., van Weeghel, M., van den Hoogenhof, M.M., Gijbels, M., van Erk, A., Schoonderwoerd, K., van den Bosch, B., Dahlmans, V., et al. (2011). Post-natal myogenic and adipogenic developmental: defects and metabolic impairment upon loss of A-type lamins. Nucleus 2, 195-207. https://doi.org/10.4161/nucl.2.3.15731
  24. Li, D., Tapscoft, T., Gonzalez, O., Burch, P.E., Quinones, M.A., Zoghbi, W.A., Hill, R., Bachinski, L.L., Mann, D.L., and Roberts, R. (1999). Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100, 461-464. https://doi.org/10.1161/01.CIR.100.5.461
  25. Maron, B.J., Towbin, J.A., Thiene, G., Antzelevitch, C., Corrado, D., Arnett, D., Moss, A.J., Seidman, C.E., Young, J.B., American Heart, A., et al. (2006). Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807-1816. https://doi.org/10.1161/CIRCULATIONAHA.106.174287
  26. Milner, D.J., Weitzer, G., Tran, D., Bradley, A., and Capetanaki, Y. (1996). Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J. Cell Biol. 134, 1255-1270. https://doi.org/10.1083/jcb.134.5.1255
  27. Miura, K., Nakagawa, H., Morikawa, Y., Sasayama, S., Matsumori, A., Hasegawa, K., Ohno, Y., Tamakoshi, A., Kawamura, T., and Inaba, Y. (2002). Epidemiology of idiopathic cardiomyopathy in Japan: results from a nationwide survey. Heart 87, 126-130. https://doi.org/10.1136/heart.87.2.126
  28. Morita, H., Seidman, J., and Seidman, C.E. (2005). Genetic causes of human heart failure. J. Clin. Invest. 115, 518-526. https://doi.org/10.1172/JCI24351
  29. Mortality, G.B.D., and Causes of Death, C. (2015). Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117-171. https://doi.org/10.1016/S0140-6736(14)61682-2
  30. Muchir, A., Pavlidis, P., Decostre, V., Herron, A.J., Arimura, T., Bonne, G., and Worman, H.J. (2007). Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. The Journal of clinical investigation 117, 1282-1293. https://doi.org/10.1172/JCI29042
  31. Muchir, A., Shan, J., Bonne, G., Lehnart, S.E., and Worman, H.J. (2009). Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum. Mol. Genet. 18, 241-247.
  32. Muntoni, F., Cau, M., Ganau, A., Congiu, R., Arvedi, G., Mateddu, A., Marrosu, M.G., Cianchetti, C., Realdi, G., Cao, A., et al. (1993). Brief report: deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N Engl. J. Med. 329, 921-925. https://doi.org/10.1056/NEJM199309233291304
  33. Nikolova, V., Leimena, C., McMahon, A.C., Tan, J.C., Chandar, S., Jogia, D., Kesteven, S.H., Michalicek, J., Otway, R., Verheyen, F., et al. (2004). Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J. Clin. Invest. 113, 357-369. https://doi.org/10.1172/JCI200419448
  34. Olson, T.M., Michels, V.V., Ballew, J.D., Reyna, S.P., Karst, M.L., Herron, K.J., Horton, S.C., Rodeheffer, R.J., and Anderson, J.L. (2005). Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. Jama 293, 447-454. https://doi.org/10.1001/jama.293.4.447
  35. Parks, S.B., Kushner, J.D., Nauman, D., Burgess, D., Ludwigsen, S., Peterson, A., Li, D., Jakobs, P., Litt, M., Porter, C.B., et al. (2008). Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am. Heart J. 156, 161-169. https://doi.org/10.1016/j.ahj.2008.01.026
  36. Perrot, A., Hussein, S., Ruppert, V., Schmidt, H.H., Wehnert, M.S., Duong, N.T., Posch, M.G., Panek, A., Dietz, R., Kindermann, I., et al. (2009). Identification of mutational hot spots in LMNA encoding lamin A/C in patients with familial dilated cardiomyopathy. Basic Res. Cardiol. 104, 90-99. https://doi.org/10.1007/s00395-008-0748-6
  37. Raffaele Di Barletta, M., Ricci, E., Galluzzi, G., Tonali, P., Mora, M., Morandi, L., Romorini, A., Voit, T., Orstavik, K.H., Merlini, L., et al. (2000). Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am. J. Hum. Genet. 66, 1407-1412. https://doi.org/10.1086/302869
  38. Ramos, F.J., Chen, S.C., Garelick, M.G., Dai, D.F., Liao, C.Y., Schreiber, K.H., MacKay, V.L., An, E.H., Strong, R., Ladiges, W.C., et al. (2012). Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl. Med. 4, 144ra103. https://doi.org/10.1126/scitranslmed.3003802
  39. Sanbe, A. (2013). Dilated cardiomyopathy: a disease of the myocardium. Biol. Pharm. Bull. 36, 18-22.
  40. Schmitt, J.P., Kamisago, M., Asahi, M., Li, G.H., Ahmad, F., Mende, U., Kranias, E.G., MacLennan, D.H., Seidman, J.G., and Seidman, C.E. (2003). Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299, 1410-1413. https://doi.org/10.1126/science.1081578
  41. Schmitt, J.P., Debold, E.P., Ahmad, F., Armstrong, A., Frederico, A., Conner, D.A., Mende, U., Lohse, M.J., Warshaw, D., Seidman, C.E., et al. (2006). Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function. Proc. Natl. Acad. Sci. USA 103, 14525-14530. https://doi.org/10.1073/pnas.0606383103
  42. Stewart, C.L., Roux, K.J., and Burke, B. (2007). Blurring the boundary: the nuclear envelope extends its reach. Science 318, 1408-1412. https://doi.org/10.1126/science.1142034
  43. Sullivan, T., Escalante-Alcalde, D., Bhatt, H., Anver, M., Bhat, N., Nagashima, K., Stewart, C.L., and Burke, B. (1999). Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913-920. https://doi.org/10.1083/jcb.147.5.913
  44. Tsubata, S., Bowles, K.R., Vatta, M., Zintz, C., Titus, J., Muhonen, L., Bowles, N.E., and Towbin, J.A. (2000). Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest. 106, 655-662. https://doi.org/10.1172/JCI9224
  45. van Tintelen, J.P., Hofstra, R.M., Katerberg, H., Rossenbacker, T., Wiesfeld, A.C., du Marchie Sarvaas, G.J., Wilde, A.A., van Langen, I.M., Nannenberg, E.A., van der Kooi, A.J., et al. (2007). High yield of LMNA mutations in patients with dilated cardiomyopathy and/or conduction disease referred to cardiogenetics outpatient clinics. Am. Heart J. 154, 1130-1139. https://doi.org/10.1016/j.ahj.2007.07.038
  46. Villard, E., Duboscq-Bidot, L., Charron, P., Benaiche, A., Conraads, V., Sylvius, N., and Komajda, M. (2005). Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur. Heart J. 26, 794-803. https://doi.org/10.1093/eurheartj/ehi193
  47. Wolf, C.M., Wang, L., Alcalai, R., Pizard, A., Burgon, P.G., Ahmad, F., Sherwood, M., Branco, D.M., Wakimoto, H., Fishman, G.I., et al. (2008). Lamin A/C haploinsufficiency causes dilated cardiomyopathy and apoptosis-triggered cardiac conduction system disease. J. Mol. Cell. Cardiol. 44, 293-303. https://doi.org/10.1016/j.yjmcc.2007.11.008
  48. Wu, W., Muchir, A., Shan, J., Bonne, G., and Worman, H.J. (2011). Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation 123, 53-61. https://doi.org/10.1161/CIRCULATIONAHA.110.970673

피인용 문헌

  1. Data on whole length myosin binding protein C stabilizes myosin S2 as measured by gravitational force spectroscopy vol.18, pp.None, 2016, https://doi.org/10.1016/j.dib.2018.04.002
  2. Personalized medicine in inflammatory cardiomyopathy vol.15, pp.2, 2018, https://doi.org/10.2217/pme-2017-0074
  3. Identification of a LMNA (c.646C>T) variant by whole-exome sequencing in combination with a dilated cardiomyopathy (DCM) related gene filter in a family with familiar DCM vol.32, pp.4, 2016, https://doi.org/10.7555/jbr.32.20180003
  4. Filamin C Cardiomyopathy Variants Cause Protein and Lysosome Accumulation vol.129, pp.7, 2016, https://doi.org/10.1161/circresaha.120.317076
  5. MicroRNAs: From Junk RNA to Life Regulators and Their Role in Cardiovascular Disease vol.11, pp.4, 2016, https://doi.org/10.3390/cardiogenetics11040023