DOI QR코드

DOI QR Code

Discrete Fourier Transform Analysis to Characterize the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids

불연속 푸리에 변환 해석에 의한 점탄성 고분자 액체의 대진폭 전단유동거동 연구

  • Chang, Gap-Shik (Reliability Assessment Team, FITI Testing & Research Institute) ;
  • Ahn, Hye-Jin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Song, Ki-Won (Department of Organic Material Science and Engineering, Pusan National University)
  • 장갑식 (FITI 시험연구원 신뢰성평가팀) ;
  • 안혜진 (부산대학교 공과대학 유기소재시스템공학과) ;
  • 송기원 (부산대학교 공과대학 유기소재시스템공학과)
  • Received : 2016.09.11
  • Accepted : 2016.09.30
  • Published : 2016.10.31

Abstract

The objective of the present study is to systematically characterize the nonlinear viscoelastic behavior of concentrated polymer systems in large amplitude oscillatory shear (LAOS) flow fields by means of discrete Fourier transform (DFT) analysis. Using an Advanced Rheometric Expansion System (ARES), the dynamic viscoelastic behavior of aqueous poly(ethylene oxide) (PEO) solutions with various molecular weights and different concentrations has been investigated with several fixed strain amplitudes and constant angular frequencies. The nonlinear viscoelastic functions and the degree of nonlinearity were derived from the Fourier spectra of stress responses, and then the nonlinear behavior was interpreted by the use of 3D and contour plots, respectively. The effects of strain amplitude and angular frequency on the nonlinear viscoelastic behavior were nextly discussed in depth. In addition, the strain limits of linear viscoelastic response were determined from the ratio of harmonic contributions, and then the validity of Pipkin diagram with regard to characteristic time was evaluated for all PEO solutions. The main findings obtained from this study are summarized as follows: (1) At small strain amplitudes, the influence of the first harmonic contribution is dominant. As the strain amplitude becomes larger, however, the effect of higher odd harmonic contributions is increased, resulting in an occurrence of a nonlinear viscoelastic behavior. (2) The degree of nonlinearity is increased with an increase in strain amplitude. This is also increased with increasing angular frequency until reaching the maximum value at a certain angular frequency and then decreased with a further increase in angular frequency. (3) The Pipkin diagram with regard to characteristic time is a very effective method to explore the nonlinear regime of viscoelastic polymer liquids in LAOS deformations.

Keywords

References

  1. J. D. Ferry, "Viscoelastic Properties of Polymers", 3rd Ed., John Wiley & Sons, New York, 1980.
  2. N. W. Tschoegl, "The Phenomenological Theory of Linear Viscoelastic Behavior", Springer-Verlag, Berlin, 1989.
  3. J. M. Dealy and K. F. Wissbrun, "Melt Rheology and Its Role in Plastics Processing : Theory and Applications", Van Nostrand Reinhold, New York, 1990.
  4. R. I. Tanner, "Engineering Rheology", 2nd Ed., Oxford University Press, New York, 2000.
  5. X. Li, S. Q. Wang, and X. Wang, "Nonlinearity in Large Amplitude Oscillatory Shear (LAOS) of Different Viscoelastic Materials", J. Rheol., 2009, 53, 1255-1274. https://doi.org/10.1122/1.3193713
  6. S. A. Rogers and M. P. Lettinga, "A Sequence of Physical Processes Determined and Quantified in Large-Amplitude Oscillatory Shear (LAOS) : Application to Theoretical Nonlinear Models", J. Rheol., 2012, 56, 1-25. https://doi.org/10.1122/1.3662962
  7. P. R. de Souza Mendes, R. L. Thompson, A. A. Alicke, and R. T. Leite, "The Quasilinear Large-Amplitude Viscoelastic Regime and Its Significance in the Rheological Characterization of Soft Matter", J. Rheol., 2014, 58, 537-561. https://doi.org/10.1122/1.4865695
  8. M. R. B. Mermet-Guyennet, J. G. de Castro, M. Habibi, N. Martel, M. M. Denn, and D. Bonn, "LAOS : The Strain Softening/Strain Hardening Paradox", J. Rheol., 2015, 59, 21-32. https://doi.org/10.1122/1.4902000
  9. D. R. Gamota, A. S. Wineman, and F. E. Filisko, "Fourier Transform Analysis: Nonlinear Dynamic Response of an Electrorheological Material", J. Rheol., 1993, 37, 919-933. https://doi.org/10.1122/1.550403
  10. K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response", J. Rheol., 2005, 49, 747-758. https://doi.org/10.1122/1.1895801
  11. S. Hofl, F. Kremer, H. W. Spiess, M. Wilhelm, and S. Kahle, "Effect of Large Amplitude Oscillatory Shear (LAOS) on the Dielectric Response of 1,4-cis-polyisoprene", Polymer, 2006, 47, 7282-7288. https://doi.org/10.1016/j.polymer.2006.03.116
  12. K. W. Song, H. Y. Kuk, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions: Oscillatory Shear Flow Behavior", Korea-Aust. Rheol. J., 2006, 18, 67-81.
  13. D. R. Gamota and F. E. Filisko, "Dynamic Mechanical Studies of Electrorheological Materials: Moderate Frequencies", J. Rheol., 1991, 35, 399-425. https://doi.org/10.1122/1.550221
  14. K. W. Song and G. S. Chang, "Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation", Kor. J. Rheol., 1998, 10, 173-183.
  15. T. T. Tee and J. M. Dealy, "Nonlinear Viscoelasticity of Polymer Melts", Trans. Soc. Rheol., 1975, 19, 595-615. https://doi.org/10.1122/1.549387
  16. W. C. MacSporran and R. P. Spiers, "The Dynamic Performance of the Weissenberg Rheogoniometer I. Small Amplitude Oscillatory Shearing", Rheol. Acta, 1982, 21, 184-192. https://doi.org/10.1007/BF01736417
  17. W. C. MacSporran and R. P. Spiers, "The Dynamic Performance of the Weissenberg Rheogoniometer II. Large Amplitude Oscillatory Shearing-Fundamental Response", Rheol. Acta, 1982, 21, 193-200. https://doi.org/10.1007/BF01736418
  18. W. C. MacSporran and R. P. Spiers, "The Dynamic Performance of the Weissenberg Rheogoniometer III. Large Amplitude Oscillatory Shearing-Harmonic Analysis", Rheol. Acta, 1984, 23, 90-97. https://doi.org/10.1007/BF01333880
  19. S. N. Ganeriwala and C. A. Rotz, "Fourier Transform Mechanical Analysis for Determining the Nonlinear Viscoelastic Properties of Polymers", Polym. Eng. Sci., 1987, 27, 165-178. https://doi.org/10.1002/pen.760270211
  20. K. W. Song, G. S. Chang, C. B. Kim, J. O. Lee, and J. S. Paik, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (I) Limits of Linear Viscoelastic Response and Nonlinear Behavior with Large Amplitude Oscillatory Shear Deformation", J. Kor. Fiber Soc., 1996, 33, 1083-1093.
  21. A. J. Giacomin and J. M. Dealy, Large Amplitude Oscillatory Shear, in "Techniques in Rheological Measurements", A. A. Collyer Ed., Chapman & Hall, London, 1993, Chap. 4.
  22. G. S. Chang, H. J. Ahn, and K. W. Song, "A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids", Text. Sci. Eng., 2015, 52, 159-166. https://doi.org/10.12772/TSE.2015.52.159
  23. W. M. Davis and C. W. Macosko, "Nonlinear Dynamic Mechanical Moduli for Polycarbonate and PMMA", J. Rheol., 1978, 22, 53-71. https://doi.org/10.1122/1.549500
  24. S. Onogi, T. Masuda, and T. Matsumoto, "Non-linear Behavior of Viscoelastic Materials. I. Disperse Systems of Polystyrene Solution and Carbon Black", Trans. Soc. Rheol., 1970, 14, 275-294. https://doi.org/10.1122/1.549190
  25. T. Matsumoto, Y. Segawa, Y. Warashina, and S. Onogi, "Nonlinear Behavior of Viscoelastic Materials II. The Method of Analysis and Temperature Dependence of Nonlinear Viscoelastic Functions", Trans. Soc. Rheol., 1973, 17, 47-62. https://doi.org/10.1122/1.549319
  26. W. Philippoff, "Vibrational Measurements with Large Amplitudes", Trans. Soc. Rheol., 1966, 10, 317-334. https://doi.org/10.1122/1.549049
  27. J. Harris and K. Bogie, "The Experimental Analysis of Nonlinear Waves in Mechanical Systems", Rheol. Acta, 1967, 6, 3-5. https://doi.org/10.1007/BF01968375
  28. J. S. Dodge and I. M. Krieger, "Oscillatory Shear of Nonlinear Fluids I. Preliminary Investigation", Trans. Soc. Rheol., 1971, 15, 589-601. https://doi.org/10.1122/1.549236
  29. H. Komatsu, T. Mitsui, and S. Onogi, "Nonlinear Viscoelastic Properties of Semisolid Emulsions", Trans. Soc. Rheol., 1973, 17, 351-364. https://doi.org/10.1122/1.549285
  30. I. M. Krieger and T. F. Niu, "A Rheometer for Oscillatory Studies of Nonlinear Fluids", Rheol. Acta, 1973, 12, 567-571. https://doi.org/10.1007/BF01525599
  31. B. Debbaut and H. Burhin, "Large Amplitude Oscillatory Shear and Fourier-Transform Rheology for a High-Density Polyethylene: Experiments and Numerical Simulation", J. Rheol., 2002, 46, 1155-1176. https://doi.org/10.1122/1.1495493
  32. K. Hyun, S. H. Kim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear as a Way to Classify the Complex Fluids", J. Non-Newt. Fluid Mech., 2002, 107, 51-65. https://doi.org/10.1016/S0377-0257(02)00141-6
  33. M. Kobayashi, S. Ishikawa, and M. Samejima, "Application of Nonlinear Viscoelastic Analysis by the Oscillation Method to Some Pharmaceutical Ointments in the Japanese Pharmacopeia", Chem. Pharm. Bull., 1982, 30, 4468-4478. https://doi.org/10.1248/cpb.30.4468
  34. M. Langela, U. Wiesner, H. W. Spiess, and M. Wilhelm, "Microphase Reorientation in Block Copolymer Melts as Detected via FT Rheology and 2D SAXS", Macromolecules, 2002, 35, 3198-3204. https://doi.org/10.1021/ma0115693
  35. K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Nonlinear Response of Complex Fluids under LAOS (Large Amplitude Oscillatory Shear) Flow", Korea-Aust. Rheol. J., 2003, 15, 97-105.
  36. K. Tan, S. Cheng, L. Juge, and L. E. Bilston, "Characterizing Soft Tissues under Large Amplitude Oscillatory Shear and Combined Loading", J. Biomech., 2013, 46, 1060-1066. https://doi.org/10.1016/j.jbiomech.2013.01.028
  37. A. J. Giacomin, R. S. Jeyaseelan, T. Samurkas, and J. M. Dealy, "Validity of Separable BKZ Model for Large Amplitude Oscillatory Shear", J. Rheol., 1993, 37, 811-826. https://doi.org/10.1122/1.550396
  38. N. Phan-Thien, M. Newberry, and R. I. Tanner, "Non-linear Oscillatory Flow of a Soft Solid-like Viscoelastic Material", J. Non-Newt. Fluid Mech., 2000, 92, 67-80. https://doi.org/10.1016/S0377-0257(99)00110-X
  39. S. H. Kim, H. G. Sim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of the Network Model for Associating Polymeric Systems", Korea-Aust. Rheol. J., 2002, 14, 49-55.
  40. H. G. Sim, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of Complex Fluids Investigated by a Network Model : a Guideline for Classification", J. Non-Newt. Fluid Mech., 2003, 112, 237-250. https://doi.org/10.1016/S0377-0257(03)00102-2
  41. M. Wilhelm, D. Maring, and H. W. Spiess, "Fourier-Transform Rheology", Rheol. Acta, 1998, 37, 399-405. https://doi.org/10.1007/s003970050126
  42. M. Wilhelm, P. Reinheimer, and M. Ortseifer, "High Sensitivity Fourier-Transform Rheology", Rheol. Acta, 1999, 38, 349-356. https://doi.org/10.1007/s003970050185
  43. M. Wilhelm, P. Reinheimer, M. Ortseifer, T. Neidhofer, and H. W. Spiess, "The Crossover between Linear and Non-linear Mechanical Behaviour in Polymer Solutions as Detected by Fourier-Transform Rheology", Rheol. Acta, 2000, 39, 241-246. https://doi.org/10.1007/s003970000084
  44. M. Wilhelm, "Fourier-Transform Rheology", Macromol. Mater. Eng., 2002, 287, 83-105. https://doi.org/10.1002/1439-2054(20020201)287:2<83::AID-MAME83>3.0.CO;2-B
  45. S. Kallus, N. Willenbacher, S. Kirsch, D. Distler, T. Neidhofer, M. Wilhelm, and H. W. Spiess, "Characterization of Polymer Dispersions by Fourier-Transform Rheology", Rheol. Acta, 2001, 40, 552-559. https://doi.org/10.1007/s003970100184
  46. H. Qiu, M. Bousmina, and J. M. Dealy, "Coupling between Flow and Diffusion at Polymer/Polymer Interfaces: Large Amplitude Oscillatory Shear Experiments", Rheol. Acta, 2002, 41, 87-92. https://doi.org/10.1007/s003970200008
  47. K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of PEO-PPOPEO Triblock Copolymer Solutions", Rheol. Acta, 2006, 45, 239-249. https://doi.org/10.1007/s00397-005-0014-x
  48. M. Grosso and P. L. Maffettone, "A New Methodology for the Estimation of Drop Size Distributions of Dilute Polymer Blends Based on LAOS Flows", J. Non-Newt. Fluid Mech., 2007, 143, 48-58. https://doi.org/10.1016/j.jnnfm.2007.01.005
  49. C. Klein, P. Venema, L. Sagis, and E. van der Linden, "Rheological Discrimination and Characterization of Carrageenans and Starches by Fourier Transform-Rheology in the Non-Linear Viscous Regime", J. Non-Newt. Fluid Mech., 2008, 151, 145-150. https://doi.org/10.1016/j.jnnfm.2008.01.001
  50. C. H. Bi, D. Li, L. J. Wang, Y. Wang, and B. Adhikari, "Characterization of Non-Linear Rheological Behavior of SPIFG Dispersions Using LAOS Tests and FT Rheology", Carbohydr. Polym., 2013, 92, 1151-1158. https://doi.org/10.1016/j.carbpol.2012.10.067
  51. K. W. Song, T. H. Kim, G. S. Chang, S. K. An, J. O. Lee, and C. H. Lee, "Steady Shear Flow Properties of Aqueous Poly(Ethylene Oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 193-203.
  52. K. W. Song, J. W. Bae, G. S. Chang, D. H. Noh, Y. H. Park, and C. H. Lee, "Dynamic Viscoelastic Properties of Aqueous Poly(Ethylene Oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 295-307.
  53. F. E. Bailey, Jr. and J. V. Koleske, "Poly(Ethylene Oxide)", Academic Press, New York, 1976.
  54. K. R. Shah, S. A. Chaudhary, and T. A. Mehta, "Polyox (Polyethylene Oxide) Multifunctional Polymer in Novel Drug Delivery System", Int. J. Pharm. Sci. Drug Res., 2014, 6, 95-101.
  55. S. Bekiranov, R. Bruinsma, and P. Pincus, "Solution Behavior of Poly(Ethylene Oxide) in Water as a Function of Temperature and Pressure", Phys. Rev. E., 1997, 55, 577-585.
  56. S. Kawaguchi, G. Imai, J. Suzuki, A. Miyahara, T. Kitano, and K. Ito, "Aqueous Solution Properties of Oligo- and Poly(Ethylene Oxide) by Static Light Scattering and Intrinsic Viscosity", Polymer, 1997, 38, 2885-2891. https://doi.org/10.1016/S0032-3861(96)00859-2
  57. P. N. Georgelos and J. M. Torkelson, "The Role of Solution Structure in Apparent Thickening Behavior of Dilute PEO/Water Systems", J. Non-Newt. Fluid Mech., 1988, 27, 191-204. https://doi.org/10.1016/0377-0257(88)85013-4
  58. W. Ramirez, "The FFT Fundamentals and Concepts", Prentice-Hall, New Jersey, 1985.
  59. A. T. Tsai and D. S. Soong, "Measurement of Fast Transient and Steady-State Responses of Viscoelastic Fluids with a Sliding Cylinder Rheometer Executing Coaxial Displacements", J. Rheol., 1985, 29, 1-18. https://doi.org/10.1122/1.549783
  60. J. M. Dealy, J. F. Petersen, and T. T. Tee, "A Concentric-Cylinder Rheometer for Polymer Melts", Rheol. Acta, 1973, 12, 550-558. https://doi.org/10.1007/BF01525596
  61. W. K. W. Tsang and J. M. Dealy, "The Use of Large Transient Deformations to Evaluate Rheological Models for Molten Polymers", J. Non-Newt. Fluid Mech., 1981, 9, 203-222. https://doi.org/10.1016/0377-0257(81)85001-X
  62. A. J. Giacomin and J. G. Oakley, "Obtaining Fourier Series Graphically from Large Amplitude Oscillatory Shear Loops", Rheol. Acta, 1993, 32, 328-332. https://doi.org/10.1007/BF00434197
  63. F. J. Lockett, "Non-Linear Viscoelastic Solids", Academic Press, New York, 1972.
  64. M. J. Reimers and J. M. Dealy, "Sliding Plate Rheometer Studies of Concentrated Polystyrene Solutions: Large Amplitude Oscillatory Shear of a Very High Molecular Weight Polymer in Diethyl Phthalate", J. Rheol., 1996, 40, 167-186. https://doi.org/10.1122/1.550738
  65. M. J. Reimers and J. M. Dealy, "Sliding Plate Rheometer Studies of Concentrated Polystyrene Solutions: Nonlinear Viscoelasticity and Wall Slip of Two High Molecular Weight Polymers in Tricresyl Phosphate", J. Rheol., 1998, 42, 527-548. https://doi.org/10.1122/1.550958