DOI QR코드

DOI QR Code

The Effect of Surface Defects on the Optical Properties of ZnSe:Eu Quantum Dots

ZnSe:Eu 양자점의 표면결함이 광학특성에 미치는 영향

  • Jeong, Da-Woon (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Park, Ji Young (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Seo, Han Wook (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Lim, Kyoung-Mook (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Seong, Tae-Yeon (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Bum Sung (Department of Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
  • 정다운 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 박지영 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 서한욱 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 임경묵 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 성태연 (고려대학교 신소재공학과) ;
  • 김범성 (한국생산기술연구원 한국희소금속산업기술센터)
  • Received : 2016.08.01
  • Accepted : 2016.08.15
  • Published : 2016.10.28

Abstract

Quantum dots (QDs) are capable of controlling the typical emission and absorption wavelengths because of the bandgap widening effect of nanometer-sized particles. These phosphor particles have been used in optical devices, photovoltaic devices, advanced display devices, and several biomedical complexes. In this study, we synthesize ZnSe QDs with controlled surface defects by a heating-up method. The optical properties of the synthesized particles are analyzed using UV-visible and photoluminescence (PL) measurements. Calculations indicate nearly monodisperse particles with a size of about 5.1 nm at $260^{\circ}C$ (full width at half maximum = 27.7 nm). Furthermore, the study results confirm that successful doping is achieved by adding $Eu^{3+}$ preparing the growth phase of the ZnSe:Eu QDs when heating-up method. Further, we investigate the correlation between the surface defects and the luminescent properties of the QDs.

Keywords

References

  1. V. L. Colvin, M. C. Schlamp and A. P. Allvisatos: Nature, 370 (1994) 354. https://doi.org/10.1038/370354a0
  2. T. Kim, K. Cho, E. Lee, S. Lee, J. Chae, J. Kim, D. Kim, J. Kwon, G. Amaratunga, S. Lee, B. Choi, Y. Kuk, J. Kim and K. Kim: Nat. Photonics, 5 (2011) 176. https://doi.org/10.1038/nphoton.2011.12
  3. S. K. Poznyak, D. V. Talapin and E. V. Shevchenko: Nano Lett., 4 (2004) 693. https://doi.org/10.1021/nl049713w
  4. V. Brunetti, R. Fiammengo, A. Galeone, M. A. Malvindi, G. Vecchio, P. P. Pompa, H. Chibli, J. l. Nadeau and R. Cingolani: Nanoscale, 5 (2013) 307. https://doi.org/10.1039/C2NR33024E
  5. D.-W. Jeong, B. Swain, T.-Y. Seong, K.-T. Park, C.G. Lee and B.S. Kim: Int. J. Appl. Ceram. Tec., 13 (2015) 223.
  6. N.S.A. Eom, T.-S. Kim, Y.-H. Choa, W.-B. Kim and B.S. Kim: Mater. Lett., 99 (2013) 14. https://doi.org/10.1016/j.matlet.2013.02.065
  7. W. Ji, P. Jing, W. Xu, X. Yuan, Y. Wang, J. Zhao and A.K.-Y. Jen: Appl. Phys. Lett., 103 (2013) 53106. https://doi.org/10.1063/1.4817086
  8. P. Reiss: New J. Chem., 31 (2007) 1843. https://doi.org/10.1039/b712086a
  9. A. Aboulaich, L. Balan, J. Ghanbaja, G. Medjadhi, C. Merlin and R. Schneider: Chem. Mater., 16 (2011) 3706.
  10. B. Kwon, H. Jang, H. Yoo, S. Kim, D. Kang, S. Maeng, D. Jang, H. Kim and D. Jeon: J. Mater. Chem., 21 (2011) 12812. https://doi.org/10.1039/c1jm12091c
  11. N. Liu, W. Zhou, L. Xu, L. Tong, J. Zhou, W. Su, Y. Yu, J. Xu and Z. Ma: J. Non-Cryst. Solids, 358 (2012) 2353. https://doi.org/10.1016/j.jnoncrysol.2011.12.060
  12. L.E. Brus: J. Chem. Physics, 80 (1984) 4403. https://doi.org/10.1063/1.447218
  13. L. S. Li, N. Pradhan, Y. Wang and X. Peng: Nano Lett., 4 (2004) 2261. https://doi.org/10.1021/nl048650e
  14. B. Kwon, H. Jang, H. Yoo, S. Kim, D. Kang, S. Maeng, D. Jang, H. Kim and D. Jeon: J. Mater. Chem., 21 (2011) 12812. https://doi.org/10.1039/c1jm12091c