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DIFFERENTIABILITY AND

NON-DIFFERENTIABILITY POINTS OF

THE MINKOWSKI QUESTION MARK FUNCTION

In-Soo Baek

Abstract. Using the periodic continued fraction, we give concrete ex-
amples of the points at which the derivatives of the Minkowski question
mark function does not exist. We also give examples of the differentia-
bility points which show that recent apparently independent results are
consistent and closely related.

1. Introduction

Many authors ([1, 2, 3, 6, 7, 8]) have studied the differentiability and non-
differentiability of the Minkowski question mark function. Recently the multi-
fractal spectrum of the non-differentiability points of the Minkowski question
mark function was investigated in [4], without giving the concrete example
of its non-differentiability point. More recently, the concrete non-trivial ex-
amples of the points at which the derivatives of the Minowski question mark
function are 0 or infinity were studied ([5]). The differentiability points and
non-differentiability points of the Minkowski question mark function are closely
related to the Stern-Brocot intervals ([3]). For the study of Stern-Brocot inter-
vals, they used the n-th convergent quotient related ratio ([3])

(1) l1(x) = lim
n→∞

2 log qn(x)
∑n

i=1 ai(x)

for the continued fraction x ∈ (0, 1), where the n-th convergent quotient ([6])

pn(x)/qn(x) = [a1(x), a2(x), a3(x), . . . , an(x)] =
1

a1(x) +
1

a2(x)+
1

a3(x)+···

+
1

an(x)

,
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for

x = [a1(x), a2(x), a3(x), . . .] =
1

a1(x) +
1

a2(x)+
1

a3(x)+···

.

We recall from [6] that the Minkowski question mark function Q is defined by

Q(x) =
1

2a1(x)−1
− 1

2a1(x)+a2(x)−1
+ · · ·+ (−1)n+1

2a1(x)+a2(x)+···+an(x)−1
+ · · ·

for

x = [a1(x), a2(x), . . . , an(x), . . .].

Lee ([5]) gave the non-trivial examples of differentiability points of the
Minkowski question mark function using the simple periodic continued frac-
tions. We note that the end points of the Stern-Brocot intervals are the dif-
ferentiability points at which the derivative of the Minkowski question mark
function is 0. In this paper, using the properties of the eventually simple peri-
odic continued fractions, we give some examples of the differentiability points
and the non-differentiability points of the Minkowski question mark function.
Finally, we show that our non-trivial examples of the differentiability points
give the evidence that recent results [4] are consistent with the earlier results
[6]. Further we show that the results ([4, 6]) are closely related comparing the
conditions for the differentiability.

2. Preliminaries

From now on, N denotes the set of the positive integers. It is well-known
([6]) that for each n ∈ N

(2) qn(x) = anqn−1(x) + qn−2(x)

with q0 = 1 and q
−1 = 0 for the n-th convergent quotient

pn(x)/qn(x) = [a1(x), a2(x), a3(x), . . . , an(x)] =
1

a1(x) +
1

a2(x)+
1

a3(x)+···

+
1

an(x)

,

for the continued fraction x = [a1(x), a2(x), a3(x), . . .] where ai(x) ∈ N for each
i ∈ N. We recall the definition of periodic continued fraction([5])

[a1, . . . , an] = [a1, . . . , an, a1, . . . , an, a1, . . . , an, . . .],

satisfying akn+i = ai for every non-negative integer k with 1 ≤ i ≤ n − 1
n ∈ N. In particular, we call the periodic continued fraction [a] the simple
periodic continued fraction.

Also we recall the definition of the eventually periodic continued fraction
([5])

[b1, . . . , bm, c1, . . . , ck] = [b1, . . . , bm, c1, . . . , ck, c1, . . . , ck, c1, . . . , ck, . . .]
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for m, k ∈ N. We generalize the definition of (1) as follows:

l1(x) = lim inf
n→∞

2 log qn(x)
∑n

i=1 ai(x)
,

l1(x) = lim sup
n→∞

2 log qn(x)
∑n

i=1 ai(x)
.

3. Main results

Proposition 1 ([5]). For each a ∈ N,

l1([a]) =
2

a
log

a+
√
a2 + 4

2
.

It was shown ([5]) that l1([a]) > log 2 for a = 1, 2, 3, 4 and l1([a]) < log 2 for
the positive integer a ≥ 5. We have more exact values for the n-th convergent
quotient related ratio l1(x) as follows.

Proposition 2.

l1([1]) = log 2 + 0.269276469559 · · · ,
l1([2]) = log 2 + 0.18822640646 · · · ,
l1([3]) = log 2 + 0.103361630965 · · · ,
l1([4]) = log 2 + 0.0286705570295 · · · .

On the other hand,

l1([5]) = log 2− 0.0342547220115 · · · ,
l1([6]) = log 2− 0.0869983608159 · · · ,
l1([7]) = log 2− 0.131512760089 · · · .

Proof. It follows immediately from the above proposition. �

We recall the Binet’s formula ([5]) and give its revised form.

Proposition 3. Let qm+n satisfy the recurrence relation qm+n = aqm+n−1 +
bqm+n−2 for every m,n ∈ N with qm−1 = E, qm = C and qm+1 = D. Assume

that the equation r2 − ar − b = 0 has the distinct solutions. Then qm+n =
Aλn

1 +Bλn
2 where λ1, λ2 are the distinct solutions of the equation r2−ar−b = 0

and A,B satisfy the initial conditions qm = C and qm+1 = D.

Proof. It follows from the same arguments of the proof of the Binet’s formula.
�

The following theorem is essential for our main result.

Theorem 4. For each a ∈ N,

l1([b1, . . . , bm, a]) = l1([a]).
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Proof. Let x = [b1, . . . , bm, a]. From (1) and (2),

l1(x) = lim
n→∞

2 log qm+n(x)

b1 + · · ·+ bm +
∑n

i=1 ai(x)
= lim

n→∞

2 log qm+n(x)

b1 + · · ·+ bm + na
.

From the above proposition, we have qm+n(x) = Aλn
1 + Bλn

2 where A,B are

constants with λ1 = a+
√

a2+4
2 , λ2 = a−

√

a2+4
2 .

Noting limn→∞
(a−

√

a2+4
2 )n = 0, we have

l1(x) = lim
n→∞

2 log(a+
√

a2+4
2 )n

b1 + · · ·+ bm + na
= lim

n→∞

2 log(a+
√

a2+4
2 )n

na
= l1([a]).

�

We recall the following fundamental theorem for the information of the differ-
entiability and non-differentiability of the Minkowski question mark function.

Proposition 5 ([4]). Let Q(x) be the Minkowski question mark function of x.
Then we have the following results.

(i) If l1(x) > log 2, then Q′(x) = ∞.

(ii) If l1(x) < log 2, then Q′(x) = 0.
(iii) If l1(x) < log 2 < l1(x), then Q′(x) does not exist.

We give some examples of the differentiability points of the Minkowski ques-
tion mark function. From now on, we assume that Q(x) is the Minkowski
question mark function of x.

Example 1. Let x = [a1(x), a2(x), a3(x), . . .] where ai(x) ∈ N with
∑n

i=1 ai(x)
≤ 1.3n for each n ∈ N. qn(x) ≥ qn([1]) and

∑n
i=1 ai(x) ≤ 1.3n gives

2 log qn(x)
∑n

i=1 ai(x)
≥ 2 log qn([1])

1.3n
,

which also gives

l1(x)− log 2 ≥ lim
n→∞

2 log(1+
√

12+4
2 )n

1.3n
− log 2 = 0.0471787041471 · · · .

If l1(x) = l1(x), then Q′(x) = ∞ from Proposition 5(i).

Example 2. Let x = [a1(x), a2(x), a3(x), . . .] where

ai(x) ∈ {1, 2, 3, 4, 5, 6}
with

∑n
i=1 ai(x) ≥ 5.5n for each n ∈ N. qn(x) ≤ qn([6]) and

∑n
i=1 ai(x) ≥ 5.5n

gives
2 log qn(x)
∑n

i=1 ai(x)
≤ 2 log qn([6])

5.5n
,

which also gives

l1(x) − log 2 ≤ lim
n→∞

2 log(6+
√

62+4
2 )n

5.5n
− log 2 = −0.0318939226574 · · · .

If l1(x) = l1(x), then Q′(x) = 0 from Proposition 5(ii).
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Using the above Proposition 5(iii), we construct the non-differentiability
point x as follows, which is our main result.

Example 3. Let x = [a1(x), a2(x), a3(x), . . .]. Let a ∈ {1, 2, 3, 4} and b ∈
N−{1, 2, 3, 4}. Then l1([b]) < log 2 and l1([a]) > log 2 from Proposition 2. Let

ǫ =
min{log 2− l1([b]), l1([a])− log 2}

2
> 0.

Evidently we see that there is an integer N1 such that

2 log qN1
(x)

∑N1

i=1 ai(x)
< l1([b]) + ǫ < log 2

for x = [

N1

︷ ︸︸ ︷

b, . . . , b, . . .].
Theorem 4 gives an integer N2 such that

2 log qN1+N2
(x)

∑N1+N2

i=1 ai(x)
> l1([a])− ǫ > log 2,

for x = [

N1

︷ ︸︸ ︷

b, . . . , b,

N2

︷ ︸︸ ︷

a, . . . , a, . . .].
Theorem 4 also gives an integer N3 such that

2 log qN1+N2+N3
(x)

∑N1+N2+N3

i=1 ai(x)
< l1([b]) + ǫ < log 2,

for x = [

N1

︷ ︸︸ ︷

b, . . . , b,

N2

︷ ︸︸ ︷

a, . . . , a,

N3

︷ ︸︸ ︷

b, . . . , b, . . .].
Similarly we see that there is an integer N4 such that

2 log qN1+N2+N3+N4
(x)

∑N1+N2+N3+N4

i=1 ai(x)
> l1([a])− ǫ > log 2

for x = [

N1

︷ ︸︸ ︷

b, . . . , b,

N2

︷ ︸︸ ︷

a, . . . , a,

N3

︷ ︸︸ ︷

b, . . . , b,

N4

︷ ︸︸ ︷

a, . . . , a, . . .]. Continuing these processes, we
get x = [a1(x), a2(x), a3(x), . . .] satisfying

l1(x) ≤ l1([b]) + ǫ < log 2 < l1([a])− ǫ ≤ l1(x).

Hence Q′(x) does not exist from (iii) of the above proposition.

Proposition 6 ([6]). Let Q(x) be the Minkowski question mark function of x.
Assume that Q′(x) exists for x = [a1(x), a2(x), a3(x), . . .]. Then we have:

(i) lim supn→∞

∑
n

i=1
ai(x)

n < 2 log γ
log 2 = 1.38848 · · · , where the golden mean

γ = (1 +
√
5)/2 implies Q′(x) = ∞.

(ii) lim infn→∞

∑
n

i=1
ai(x)

n > β = 5.31972 · · · , where β is the solution of the

equation 2 log(1+x)
log 2 − x = 0 implies Q′(x) = 0.
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Remark 1. The above results of the examples of differentiability points are
consistent with the above proposition in the sense that, for example,

lim
n→∞

∑n
i=1 ai([b1, . . . , bm, 1])

n
= 1 < 1.38848 · · · ,

implies Q′([b1, . . . , bm, 1]) = ∞ and

lim
n→∞

∑n
i=1 ai([b1, . . . , bm, 6])

n
= 6 > 5.31972 · · ·

implies Q′([b1, . . . , bm, 6]) = 0.

Remark 2. Consider x = [a1(x), a2(x), a3(x), . . .] where ai(x) ∈ N with
∑n

i=1 ai(x) ≤ 2 log γ
log 2n where the golden mean γ = (1 +

√
5)/2 for each n ∈ N.

Then qn(x) ≥ qn([1]) and
∑n

i=1 ai(x) ≤ 2 log γ
log 2n gives

2 log qn(x)
∑n

i=1 ai(x)
≥ 2 log qn([1])

2 log γ
log 2n

,

which also gives

l1(x) − log 2 ≥ lim
n→∞

2 log(1+
√

12+4
2 )n

2 log γ
log 2n

− log 2 = 0.

This implies that we need the constant 0 < C < 2 log γ
log 2 for example C =

1.3 in Example 1, for us to apply Proposition 5(i) to the example to get the
information Q′(x) = ∞. In this respect, we see that Proposition 5(i) is closely
related to Proposition 6(i).
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