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DIFFERENTIABILITY AND
NON-DIFFERENTIABILITY POINTS OF
THE MINKOWSKI QUESTION MARK FUNCTION

IN-S00 BAEK

ABSTRACT. Using the periodic continued fraction, we give concrete ex-
amples of the points at which the derivatives of the Minkowski question
mark function does not exist. We also give examples of the differentia-
bility points which show that recent apparently independent results are
consistent and closely related.

1. Introduction

Many authors ([1, 2, 3, 6, 7, 8]) have studied the differentiability and non-
differentiability of the Minkowski question mark function. Recently the multi-
fractal spectrum of the non-differentiability points of the Minkowski question
mark function was investigated in [4], without giving the concrete example
of its non-differentiability point. More recently, the concrete non-trivial ex-
amples of the points at which the derivatives of the Minowski question mark
function are 0 or infinity were studied ([5]). The differentiability points and
non-differentiability points of the Minkowski question mark function are closely
related to the Stern-Brocot intervals ([3]). For the study of Stern-Brocot inter-
vals, they used the n-th convergent quotient related ratio ([3])

(1) h(z) = lim %

for the continued fraction x € (0,1), where the n-th convergent quotient ([6])
1

Pa(@)/an(2) = lar (@), a2(@), a3 (), .. an(@)] = o a2<x>+a3<zl)+f+ |

[
an (z)
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for
1
T = [(11(:6),0,2(50),0,3(56),...] = 1
GJ(ZC) + a2(z)+w

We recall from [6] that the Minkowski question mark function @ is defined by

1 1 (_1)n+1
Q) = T ~ smerae=T T T e rem T e

z = la1(x),a2(x),...,an(z),...].

Lee ([5]) gave the non-trivial examples of differentiability points of the
Minkowski question mark function using the simple periodic continued frac-
tions. We note that the end points of the Stern-Brocot intervals are the dif-
ferentiability points at which the derivative of the Minkowski question mark
function is 0. In this paper, using the properties of the eventually simple peri-
odic continued fractions, we give some examples of the differentiability points
and the non-differentiability points of the Minkowski question mark function.
Finally, we show that our non-trivial examples of the differentiability points
give the evidence that recent results [4] are consistent with the earlier results
[6]. Further we show that the results ([4, 6]) are closely related comparing the
conditions for the differentiability.

2. Preliminaries

From now on, N denotes the set of the positive integers. It is well-known
([6]) that for each n € N

(2) QH(-T) = anQn—l(-T) + Qn—2($)
with go = 1 and ¢_; = 0 for the n-th convergent quotient
1

Pn(@)/an(2) = [a1(2), a2(2), as(@), - .., an(@)] = a(z) + az(x)+ a3(1i+».1.+ |

1
an (z)

for the continued fraction © = [ay(z), a2(x), az(x),...] where a;(z) € N for each
i € N. We recall the definition of periodic continued fraction([5])
]

[@r, 5 an) = [a1, oy Qny Q1o oy Gy ALy ey Ay e

satisfying agn+: = a; for every non-negative integer k£ with 1 < i < n —1
n € N. In particular, we call the periodic continued fraction [a] the simple
periodic continued fraction.

Also we recall the definition of the eventually periodic continued fraction

(5D

b1,y bmy €L - 3Gk = [D1y oy Dy Cly vy Cliy Cly e v o s Chy Cly v vy Cliy v ]
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for m, k € N. We generalize the definition of (1) as follows:

21
l,(z) = liminf qu”(x),
n— 00 2_1 (x)
. gqn(w)
l = limsu
ix) = n—>oop qai(x)

3. Main results
Proposition 1 ([5]). For each a € N,

. 2 a++Va2+4
li([a]) = alog —

It was shown ([5]) that I1([@]) > log2 for a = 1,2, 3,4 and [1([a]) < log2 for
the positive integer a > 5. We have more exact values for the n-th convergent
quotient related ratio l;(z) as follows.

Proposition 2.
lh
h

( log 2 + 0.269276469559 -
(

i (
(

)=
) = log 2 + 0.18822640646 -
)
)=

o =
||

SRS R

log2 4 0.103361630965 - - -
log 2 4+ 0.0286705570295 -

~

l
On the other hand,
11([5]) = log 2 — 0.0342547220115 - - - ,
11([6]) = log 2 — 0.0869983608159 - - - ,

11([7)) = log2 — 0.131512760089 - - - .

Proof. Tt follows immediately from the above proposition. O
We recall the Binet’s formula ([5]) and give its revised form.

Proposition 3. Let g1, satisfy the recurrence relation ¢min = a@min—1 +
b4min—2 for every m,n € N with ¢p—1 = F, ¢m = C and gm+1 = D. Assume
that the equation r?> —ar —b = 0 has the distinct solutions. Then Qm+n =
AN} + BAY where A1, Ao are the distinct solutions of the equation rP—ar—b=0
and A, B satisfy the initial conditions ¢, = C and gmy1 = D.

Proof. Tt follows from the same arguments of the proof of the Binet’s formula.
O

The following theorem is essential for our main result.

Theorem 4. For each a € N,

l1([b1, .- bm, @) = li([a)).
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Proof. Let © = [b1,...,bm,a]. From (1) and (2),

ll(l') — lim Og m+ (:Z) — lim Og m+ (SC) )
n—=o0 by 4+ + by + >0 ai(x)  n—ooby 4 -+ by + na

From the above proposition, we have gn4n(z) = AN} + BAY where A, B are
a++va2+4 )\2 _ a—+Va2+4
2 2= 2 -

constants with A\ =

Noting lim,, o (=212 V2’12+4)" =0, we have
h@) = tim BT 2R
1$_ni>rglob1++bm+na_nl~>rr()lo na - Al i

We recall the following fundamental theorem for the information of the differ-
entiability and non-differentiability of the Minkowski question mark function.

Proposition 5 ([4]). Let Q(x) be the Minkowski question mark function of x.
Then we have the following results.

(i) If Iy (x) > log2, then Q'(z) = co.

(ii) If li(z) < log2, then Q'(z) = 0.

(iil) If I, (z) <log2 < I1(x), then Q'(x) does not exist.

We give some examples of the differentiability points of the Minkowski ques-
tion mark function. From now on, we assume that Q(z) is the Minkowski
question mark function of x.

Example 1. Let z = [a1(z), az(x), as(z),...] where a;(x) € N with Y ., a;(z)
< 1.3n for each n € N. ¢, (z) > ¢, ([1]) and Y1, a;(z) < 1.3n gives

2loggn(r) _ 2loggn([T])

Yo ai(z) — 1.3n
which also gives

2 log( L lErdyn

li(z) —log2 > nlgrgo T3,

If I, (z) = I1(z), then Q'(z) = co from Proposition 5(i).

—log2 =0.0471787041471 - - - .

Example 2. Let x = [a1(x), a2(x),a3(x),...] where
a;(z) € {1,2,3,4,5,6}
with % | a;(z) > 5.5n for each n € N. ¢, (z) < ¢n([6]) and Y. a;(z) > 5.5n

gives

2loggn(z) _ 2loggn([6])
2?21 a;(x) — 5.51m ’
which also gives
B 2 log(6+\/62+4)n
l1(x) —log2 < lim 3 52 —log2 = —0.0318939226574 - - - .
n—o00 0N

If I, (z) = I1(z), then Q'(z) = 0 from Proposition 5(ii).
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Using the above Proposition 5(iii), we construct the non-differentiability
point z as follows, which is our main result.

Example 3. Let z = [a1(2),a2(2),a3(z),...]. Let a € {1,2,3,4} and b €
N—{1,2,3,4}. Then [l;([b]) < log2 and [y ([a]) > log2 from Proposition 2. Let
_ min{log2 — ll([i 1([a]) —log 2} 50
Evidently we see that there is an integer N such that

2lo x -
]\%&1() < 11([b]) + € < log2
1= 10’1(:6)
N1
—
forz=1b,...,b,...].

Theorem 4 gives an integer No such that

2log qn, N, ()
S 0y ()

Ny No

—~N
forz=1b,...,ba,...,a,...].

Theorem 4 also gives an integer N3 such that

> 11([a]) — e > log 2,

210g N, 4 Ny £ N5 ()

SN g ()

< l([b]) + € < log2,

Nl N2 N3
forx=1b,...,b,a,...,a,b,....b,...].
Similarly we see that there is an integer N, such that

2 1Og dN14+No+N3+Ny \ L ( )
ZN1+N2+N3+N4 (:C)

> [y([a]) — e > log2

i=1
N N3
— _/_ — _/_
forz =1b,...,b,a,...,a,b,...,b,a,...,a,...]. Continuing these processes, we
get z = [a ( ( ( . ] sat1sfy1ng
Li(z ) < 11([ ]) +e<log2 < li(fa]) —e < li(a).

Hence Q' (x) does not exist from (iii) of the above proposition.

Proposition 6 ([6]). Let Q(x) be the Minkowski question mark function of x.

Assume that Q' (x) exists for x = [a1(x), az(x), a3( ) ..]. Then we have:
(i) limsup,, ., ==t < 21987 = 1.38848 .-, where the golden mean
n og

v = (1 ++/5)/2 implies Q'(x) = oo.
(ii) liminf,, M > 8 =15.31972-- -, where B is the solution of the

equation 2% x =0 implies Q' (x) = 0.
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Remark 1. The above results of the examples of differentiability points are
consistent with the above proposition in the sense that, for example,

Z?:l ai([bl, ey bm,T])

lim — 1< 1.38848- -,

n—00 n
implies Q'([b1, . ..,bm,1]) = co and

" ai([bi,...,bm, 6

fim 2= @00 OB g gigzs

n—o0 n
implies Q'([b1, ..., bm,6]) = 0.
Remark 2. Consider x = [ai(z),as(x),a3(x),...] where a;(r) € N with

Yo ai(x) < 2}2—22771 where the golden mean v = (1 4 v/5)/2 for each n € N.
Then gu(z) > a([T]) and S, a;(z) < 21%3n gives

21log qn () S 2log g, ([1])

Saile) T 20,
which also gives
2log (/12 yn
L (z) —log2 > lim %) —log2 =0.
1 n—00 210g'y
log2n

This implies that we need the constant 0 < C < 2% for example C' =

1.3 in Example 1, for us to apply Proposition 5(i) to the example to get the
information Q’(z) = co. In this respect, we see that Proposition 5(i) is closely
related to Proposition 6(i).
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