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TWO GENERAL ITERATION SCHEMES FOR

MULTI-VALUED MAPS IN HYPERBOLIC SPACES

Metİn Başarır and Aynur Şahİn

Abstract. In this paper, we introduce two general iteration schemes
with bounded error terms and prove some theorems related to the strong
and △-convergence of these iteration schemes for multi-valued maps in
a hyperbolic space. The results which are presented here extend and
improve some well-known results in the current literature.

1. Introduction and preliminaries

Most of the problems in various disciplines of science are nonlinear in nature,
whereas fixed point theory proposed in the setting of normed linear space or
Banach space mainly depends on the linear structure of the underlying spaces.
A nonlinear framework for fixed point theory is a metric space embedded with
a ‘convex structure’. One such convex structure is available in a hyperbolic
space. Throughout the paper, we work in the setting of hyperbolic space in-
troduced by Kohlenbach [14], which plays a significant role in many branches
of mathematics.

A hyperbolic space (or W -hyperbolic space) is a metric space (X, d) together
with a map W : X ×X × [0, 1] → X satisfying

(W1) d (z,W (x, y, α)) ≤ αd (z, x) + (1− α) d (z, y)
(W2) d (W (x, y, α) ,W (x, y, β)) = |α− β| d (x, y)
(W3) W (x, y, α) = W (y, x, (1− α))
(W4) d (W (x, z, α) ,W (y, w, α)) ≤ (1− α) d (x, y) + αd (z, w)

for all x, y, z, w ∈ X and α, β ∈ [0, 1].
A subset K of a hyperbolic space X is called convex if W (x, y, α) ∈ K for all

x, y ∈ K and α ∈ [0, 1]. If a metric space satisfies only (W1), then it coincides
with the convex metric space introduced by Takahashi [23]. The concept of
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hyperbolic space in [14] is more restrictive than the hyperbolic type introduced
by Goebel and Kirk [8] since (W1)-(W3) together are equivalent to (X, d,W )
being a space of hyperbolic type in [8]. Also it is slightly more general than
the hyperbolic space defined by Reich and Shafrir [20]. The class of hyperbolic
spaces in [14] contains all normed linear spaces and convex subsets thereof, R-
trees, the Hilbert ball with the hyperbolic metric (see [9]), Cartesian products
of Hilbert balls, Hadamard manifolds and CAT(0) spaces (see [2]).

An important example of a hyperbolic space is the open unit ball B in the
complex plane C with respect to the Poincare metric (also called ‘Poincare
distance’)

dB(x, y) = arg tanh

∣

∣

∣

∣

x− y

1− xy

∣

∣

∣

∣

= arg tanh (1− σ (x, y))
1

2 ,

where

σ (x, y) =

(

1− |x|2
)(

1− |y|2
)

|1− xy|2
for all x, y ∈ B.

For more and detailed treatment of examples on hyperbolic space, we refer the
readers to [6, 13, 14, 15, 21].

A hyperbolic space (X, d,W ) is said to be uniformly convex [22] if for
all u, x, y ∈ X, r > 0 and ε ∈ (0, 2], there exists a δ ∈ (0, 1] such that
d
(

W
(

x, y, 1
2

)

, u
)

≤ (1−δ)r whenever d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr.
A map η : (0,∞)× (0, 2] → (0, 1] which provides such a δ = η(r, ε) for given

r > 0 and ε ∈ (0, 2] is called modulus of uniform convexity. We call η monotone
if it decreases with r (for a fixed ε). A CAT(0) space is a uniformly convex

hyperbolic space with the modulus of uniform convexity η(r, ε) = ε2

8 (see [15]).
Thus, the class of uniformly convex hyperbolic spaces includes both uniformly
convex normed spaces and CAT(0) spaces as special cases.

Let K be a nonempty subset of a metric space (X, d). The set K is
called proximinal if for each x ∈ X , there exists an element k ∈ K such
that d(x, k) = d(x,K), where d(x,K) = inf {d(x, y) : y ∈ K}. We denote by
2K , CB(K) and P (K) the family of nonempty all subsets, nonempty closed
bounded all subsets and nonempty proximinal bounded all subsets of K, re-
spectively. The Hausdorff distance on 2K is defined by

H(A,B) = max

{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}

for all A,B ∈ 2K .

Let T : K → 2K be a multi-valued map. An element p ∈ K is a fixed point
of T if p ∈ Tp. The notation F (T ) has been reserved for the set of all fixed
points of T . The map T is said to be

(i) nonexpansive if H(Tx, T y) ≤ d(x, y) for all x, y ∈ K;
(ii) quasi-nonexpansive if F (T ) 6= ∅ and H(Tx, Tp) ≤ d(x, p) for all x ∈ K

and p ∈ F (T );
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(iii) Lipschitzian if there exists a constant L > 0 such that H(Tx, T y) ≤
Ld(x, y) for all x, y ∈ K;

(iv) Lipschitzian quasi-nonexpansive if both (ii) and (iii) hold.
It is clear that each multi-valued nonexpansive map with F (T ) 6= ∅ is a quasi-

nonexpansive map. But there exist the multi-valued quasi-nonexpansive maps
that are not nonexpansive (see [19]). Moreover, each multi-valued nonexpansive
map is a Lipschitzian map with L = 1.

Yıldırım and Özdemir [25] introduced a new multi-step iteration scheme for
a finite family of non-self maps. In [11], Gürsoy et al. modified this iteration
scheme for a self-map in a Banach space as follows.

For an arbitrary fixed order k ≥ 2 and x1 ∈ K,


































xn+1 = (1− αn)y
1
n + αnTy

1
n,

y1n = (1− β1
n)y

2
n + β1

nTy
2
n,

y2n = (1− β2
n)y

3
n + β2

nTy
3
n,

...
yk−2
n = (1 − βk−2

n )yk−1
n + βk−2

n Tyk−1
n ,

yk−1
n = (1 − βk−1

n )xn + βk−1
n Txn, n ≥ 1,

or, in short,

(1)







xn+1 = (1− αn)y
1
n + αnTy

1
n,

yin = (1 − βi
n)y

i+1
n + βi

nTy
i+1
n , i = 1, 2, . . . , k − 2,

yk−1
n = (1− βk−1

n )xn + βk−1
n Txn, n ≥ 1.

By taking k = 3 and k = 2 in (1), we obtain the SP-iteration scheme of
Phuengrattana and Suantai [18] and the two-step iteration scheme of Thianwan
[24], respectively. Recently, Başarır and Şahin [1] studied the iteration scheme
(1) for single-valued maps in a CAT(0) space.

Fukhar-ud-din et al. [7] introduced two iteration schemes for multi-valued
maps in a hyperbolic space as follows.

(A) Let T1 and T2 be two multi-valued quasi-nonexpansive maps from K
into CB(K), where K is a convex subset of a hyperbolic space. Suppose that

{αn}, {βn}, {αn + βn}, {α′

n}, {β′

n}, {α′

n + β
′

n} are real sequences in [0, 1].
Then for x1 ∈ K, generate a sequence {xn} as

(2)











yn = W

(

z
′

n,W

(

xn, un,
β
′

n

1−α′

n

)

, α
′

n

)

,

xn+1 = W
(

zn,W
(

yn, vn,
βn

1−αn

)

, αn

)

, n ≥ 1,

where z
′

n ∈ T1xn, zn ∈ T2yn and {un} , {vn} are bounded sequences in K.
(B) Let T1 and T2 be two multi-valued quasi-nonexpansive maps fromK into

P (K) and PTi
x = {y ∈ Tix : d(x, y) = d(x, Tix)} , i = 1, 2. Suppose that {αn},

{βn}, {αn + βn}, {α
′

n}, {β
′

n}, {α
′

n + β
′

n} are real sequences in [0, 1]. Then for

x1 ∈ K, generate a sequence {xn} as in (2) where z
′

n ∈ PT1
xn, zn ∈ PT2

yn and
{un} , {vn} are bounded sequences in K.
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The iteration schemes (A) and (B) coincide with the iteration schemes of
Cholamjiak and Suantai [4] when W (x, y, α) = αx+(1−α)y and X is a Banach
space.

Inspired and motivated by these results, we introduce the general iteration
schemes in a hyperbolic space, as follows.

(C) Let {Ti}Ni=1 be a finite family of multi-valued maps from K into 2K ,

where K is a convex subset of a hyperbolic space. Suppose that
{

αi
n

}

,
{

βi
n

}

and
{

αi
n + βi

n

}

are real sequences in [0, 1] for each i = 1, 2, . . . , N . Then for
x1 ∈ K, define a sequence {xn} by
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(
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(
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(
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(
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n

)
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(
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(
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βN−1

n
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)
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)

,
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(
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(
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n ,
βN

n
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, n ≥ 1,

or, in short,

(3)
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(

z1n,W
(
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1
n,

β1

n

1−α1
n

)

, α1
n

)

,

yin = W
(

zin,W
(

yi−1
n , ui

n,
βi

n

1−αi
n

)

, αi
n

)

, i = 2, 3, . . . , N − 1,

xn+1 = W
(

zNn ,W
(

yN−1
n , uN

n ,
βN

n

1−αN
n

)

, αN
n

)

, n ≥ 1,

where z1n ∈ T1xn, z
i
n ∈ Tiy

i−1
n for each i = 2, 3, . . . , N and

{

ui
n

}

is a bounded
sequence in K for each i = 1, 2, . . . , N.

(D) Let {Ti}Ni=1 be the finite family of multi-valued maps from K into P (K)
and PTi

x = {y ∈ Tix : d(x, y) = d(x, Tix)} , i = 1, 2, . . . , N . Suppose that
{

αi
n

}

,
{

βi
n

}

and
{

αi
n + βi

n

}

are real sequences in [0, 1] for each i = 1, 2, . . . , N .

Then for x1 ∈ K, define a sequence {xn} as in (3) where z1n ∈ PT1
xn, z

i
n ∈

PTi
yi−1
n for each i = 2, 3, . . . , N and

{

ui
n

}

is a bounded sequence in K for each
i = 1, 2, . . . , N.

By taking N = 2 in (C) and (D), we obtain the iteration schemes (A) and
(B), respectively.

In this paper, we prove the strong and △-convergence results of the iteration
schemes (C) and (D) for the finite family of multi-valued maps in a uniformly
convex hyperbolic space.

The concept of △-convergence in a metric space was introduced by Lim [16]
and its analogue in a CAT(0) space has been investigated by Dhompongsa and
Panyanak [5]. In order to define the concept of △-convergence in the general
setup of hyperbolic space, we first collect some basic concepts.
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Let {xn} be a bounded sequence in a hyperbolic space X . For x ∈ X , we
define a continuous functional r(·, {xn}) : X → [0,∞) by

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf {r(x, {xn}) : x ∈ X}.
The asymptotic center of {xn} with respect to a subset K of X is defined as

AK ({xn}) = {x ∈ X : r (x, {xn}) ≤ r (y, {xn}) , ∀y ∈ K}.
This is the set of minimizer of the functional r(·, {xn}). If the asymptotic
center is taken with respect to X , then it is simply denoted by A({xn}). It is
known that uniformly convex Banach spaces and even CAT(0) spaces enjoy the
property that “bounded sequences have unique asymptotic center with respect
to closed convex subsets”. The following lemma is due to Leustean [15] and
ensures that this property also holds in a complete uniformly convex hyperbolic
space.

Lemma 1.1 ([15, Proposition 3.3]). Let (X, d,W ) be a complete uniformly

convex hyperbolic space with a monotone modulus of uniform convexity. Then

every bounded sequence {xn} in X has a unique asymptotic center with respect

to any nonempty closed convex subset K of X.

Recall that a sequence {xn} in X is said to △-convergent to x ∈ X if {x} is
the unique asymptotic center of {un} for every subsequence {un} of {xn}. In
this case, we write △-limn→∞

xn = x and call x as △-limit of {xn} .
In the sequel, we shall need the following results.

Lemma 1.2 ([3]). Let {an} and {bn} be sequences of non-negative real numbers

such that an+1 ≤ an + bn for all n ≥ 1. If
∑

∞

n=1 bn < ∞, then limn→∞
an

exists.

Lemma 1.3 ([13, Lemma 2.5]). Let (X, d,W ) be a uniformly convex hyper-

bolic space with a monotone modulus of uniform convexity. Let x ∈ X and

{αn} be a sequence in [a, b] for some a, b ∈ (0, 1). If {xn} and {yn} are se-

quences in X such that lim supn→∞

d (xn, x) ≤ r, lim supn→∞

d (yn, x) ≤ r and

limn→∞
d (W (xn, yn, αn) , x) = r for some r ≥ 0, then limn→∞

d (xn, yn) = 0.

Lemma 1.4 ([13, Lemma 2.6]). Let K be a nonempty closed convex subset of

a uniformly convex hyperbolic space and let {xn} be a bounded sequence in K
such that A({xn}) = {y} and r({xn}) = ρ. If {ym} is another sequence in K
such that limm→∞

r(ym, {xn}) = ρ, then limm→∞
ym = y.

2. Main results

From now onward, we denote F = ∩N
i=1F (Ti) for the finite family {Ti}Ni=1

of multi-valued maps and suppose that F 6= ∅.
We start with the following key lemmas.
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Lemma 2.1. Let K be a nonempty, closed and convex subset of a hyperbolic

space X and let {Ti}Ni=1 be the family of multi-valued quasi-nonexpansive maps

from K into 2K such that Tip = {p} for all p ∈ F and i = 1, 2, . . . , N . Let

{xn} be the sequence defined by (3) with
∑

∞

n=1(1 − αi
n − βi

n) < ∞ for all

i = 1, 2, . . . , N . Then limn→∞
d(xn, p) exists for each p ∈ F .

Proof. Since
{

ui
n

}N

i=1
are bounded sequences, we set

max
i∈{1,2,...,N}

{

sup
n∈N

d(ui
n, p)

}

< M for some M > 0.

For any p ∈ F, it follows from (3) that

d(y1n, p) = d

(

W

(

z1n,W

(

xn, u
1
n,

β1
n

1− α1
n

)

, α1
n

)

, p

)

≤ α1
nd(z

1
n, p) + (1− α1

n)d

(

W

(

xn, u
1
n,

β1
n

1− α1
n

)

, p

)

≤ α1
nd(z

1
n, p) + β1

nd(xn, p) + (1 − α1
n − β1

n)d(u
1
n, p)

≤ α1
nH(T1xn, T1p) + β1

nd(xn, p) + (1 − α1
n − β1

n)M

≤ α1
nd(xn, p) + β1

nd(xn, p) + (1 − α1
n − β1

n)M

≤ d(xn, p) + (1 − α1
n − β1

n)M(4)

and

d(y2n, p) ≤ α2
nd(z

2
n, p) + (1− α2

n)d

(

W

(

y1n, u
2
n,

β2
n

1− α2
n

)

, p

)

≤ α2
nd(z

2
n, p) + β2

nd(y
1
n, p) + (1− α2

n − β2
n)d(u

2
n, p)

≤ α2
nH(T2y

1
n, T2p) + β2

nd(y
1
n, p) + (1 − α2

n − β2
n)M

≤ d(y1n, p) + (1− α2
n − β2

n)M.(5)

Similarly, we have

d(y3n, p) ≤ d(y2n, p) + (1− α3
n − β3

n)M.

Therefore

d(y3n, p) ≤ d(xn, p) +M

3
∑

i=1

(1 − αi
n − βi

n).

Continuing the above process, we obtain

(6) d(yN−1
n , p) ≤ d(xn, p) +M

N−1
∑

i=1

(1 − αi
n − βi

n).

In addition, we have

d(xn+1, p) ≤ αN
n d(zNn , p) + (1 − αN

n )d

(

W

(

yN−1
n , uN

n ,
βN
n

1− αN
n

)

, p

)

≤ αN
n d(zNn , p) + βN

n d(yN−1
n , p) + (1− αN

n − βN
n )d(uN

n , p)
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≤ αN
n H(TNyN−1

n , TNp) + βN
n d(yN−1

n , p) + (1− αN
n − βN

n )M

≤ d(yN−1
n , p) + (1 − αN

n − βN
n )M.(7)

Combining (6) and (7), we get

d(xn+1, p) ≤ d(xn, p) +M
N
∑

i=1

(1− αi
n − βi

n).

Since
∑

∞

n=1(1 − αi
n − βi

n) < ∞ for all i = 1, 2, . . . , N , then, by Lemma 1.2,
limn→∞

d(xn, p) exists for each p ∈ F . �

Lemma 2.2. Let K be a nonempty, closed and convex subset of a uniformly

convex hyperbolic space X with a monotone modulus of uniform convexity and

let {Ti}Ni=1 be the family of multi-valued Lipschitzian quasi-nonexpansive maps

from K into CB(K) such that Tip = {p} for all p ∈ F and i = 1, 2, . . . , N . Let

{xn} be the sequence defined by (3) with 0 < l ≤ αi
n ≤ m < 1 and

∑

∞

n=1(1 −
αi
n − βi

n) < ∞ for each i = 1, 2, . . . , N . Then limn→∞
d(xn, Tixn) = 0 for each

i = 1, 2, . . . , N.

Proof. In fact, it follows from Lemma 2.1 that limn→∞
d(xn, p) exists for each

p ∈ F. We may assume that limn→∞
d(xn, p) = r. The case r = 0 is triv-

ial. Next, we deal with the case r > 0. As {xn} ,
{

yin
}

,
{

ui
n

}

are bounded
sequences, so

max
i∈{1,2,...,N−1}

{

sup
n∈N

d(u1
n, xn), sup

n∈N

d(ui+1
n , yin)

}

< ∞.

Taking limsup on both sides in the inequality (4), we obtain lim supn→∞

d(y1n, p) ≤ r. On the other hand, from (7), we have

d(xn+1, p) ≤ d(yN−1
n , p) + (1 − αN

n − βN
n )M

≤ d(yN−2
n , p) +M

N
∑

i=N−1

(1− αi
n − βi

n)

...

≤ d(y2n, p) +M

N
∑

i=3

(1− αi
n − βi

n)(8)

≤ d(y1n, p) +M

N
∑

i=2

(1− αi
n − βi

n).

This implies that lim infn→∞
d(y1n, p) ≥ r. Then we get

(9) lim
n→∞

d

(

W

(

z1n,W

(

xn, u
1
n,

β1
n

1− α1
n

)

, α1
n

)

, p

)

= lim
n→∞

d(y1n, p) = r.
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Since T1 is a quasi-nonexpansive map, then we have d(z1n, p) ≤ H(T1xn, T1p) ≤
d(xn, p). Hence

(10) lim sup
n→∞

d(z1n, p) ≤ r.

In addition, since

d

(

W

(

xn, u
1
n,

β1
n

1− α1
n

)

, p

)

≤ β1
n

1− α1
n

d(xn, p) +

(

1− β1
n

1− α1
n

)

d(u1
n, p)

≤ β1
n

1− α1
n

d(xn, p)

+

(

1− β1
n

1− α1
n

)

[

d(u1
n, xn) + d(xn, p)

]

≤ d(xn, p) +

(

1− α1
n − β1

n

1−m

)

d(u1
n, xn),

then we have

(11) lim sup
n→∞

d

(

W

(

xn, u
1
n,

β1
n

1− α1
n

)

, p

)

≤ r.

With the help of (9)-(11) and Lemma 1.3, we have

(12) lim
n→∞

d

(

z1n,W

(

xn, u
1
n,

β1
n

1− α1
n

))

= 0.

From

d(z1n, y
1
n) = d

(

z1n,W

(

z1n,W

(

xn, u
1
n,

β1
n

1− α1
n

)

, α1
n

))

≤ (1− α1
n)d

(

z1n,W

(

xn, u
1
n,

β1
n

1− α1
n

))

and

d(y1n, xn) = d

(

W

(

z1n,W

(

xn, u
1
n,

β1
n

1− α1
n

)

, α1
n

)

, xn

)

≤ α1
nd(z

1
n, xn) + (1− α1

n)d

(

W

(

xn, u
1
n,

β1
n

1− α1
n

)

, xn

)

≤ α1
nd(z

1
n, xn) + (1− α1

n − β1
n)d

(

u1
n, xn

)

,

we obtain

d(z1n, xn) ≤ d(z1n, y
1
n) + d(y1n, xn)

≤ (1 − α1
n)d

(

z1n,W

(

xn, u
1
n,

β1
n

1− α1
n

))

+ α1
nd(z

1
n, xn) + (1− α1

n − β1
n)d

(

u1
n, xn

)

.
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Rearranging the terms in the above inequality and using 0 < l ≤ α1
n ≤ m < 1,

we have

d(z1n, xn) ≤
(

1− α1
n − β1

n

1−m

)

d
(

u1
n, xn

)

+ d

(

z1n,W

(

xn, u
1
n,

β1
n

1− α1
n

))

.

Hence, by
∑

∞

n=1(1−α1
n−β1

n) < ∞, the boundedness of
{

d
(

u1
n, xn

)}

and using
(12), we obtain

(13) lim
n→∞

d(z1n, xn) = 0.

As z1n ∈ T1xn, so d(xn, T1xn) ≤ d(xn, z
1
n) which implies that

lim
n→∞

d(xn, T1xn) = 0.

Combining (4) and (5), we have d(y2n, p) ≤ d(xn, p) + M
∑2

i=1(1 − αi
n − βi

n).
This implies that lim supn→∞

d(y2n, p) ≤ r. On the other hand, taking liminf
on both sides in (8), we obtain lim infn→∞

d(y2n, p) ≥ r. Then we get

(14) lim
n→∞

d

(

W

(

z2n,W

(

y1n, u
2
n,

β2
n

1− α2
n

)

, α2
n

)

, p

)

= lim
n→∞

d(y2n, p) = r.

Since d(z2n, p) ≤ H(T2y
1
n, T2p) ≤ d(y1n, p), then we have

(15) lim sup
n→∞

d(z2n, p) ≤ r.

In addition, since

d

(

W

(

y1n, u
2
n,

β2
n

1− α2
n

)

, p

)

≤ d(y1n, p) +

(

1− α2
n − β2

n

1−m

)

d(u2
n, y

1
n),

then we have

(16) lim sup
n→∞

d

(

W

(

y1n, u
2
n,

β2
n

1− α2
n

)

, p

)

≤ r.

Appealing to Lemma 1.3 and utilizing estimates (14)-(16), we get

(17) lim
n→∞

d

(

z2n,W

(

y1n, u
2
n,

β2
n

1− α2
n

))

= 0.

From

d(z2n, y
2
n) ≤ (1− α2

n)d

(

z2n,W

(

y1n, u
2
n,

β2
n

1− α2
n

))

and
d(y2n, y

1
n) ≤ α2

nd(z
2
n, y

1
n) + (1 − α2

n − β2
n)d

(

u2
n, y

1
n

)

,

we get

d(z2n, y
1
n) ≤ d(z2n, y

2
n) + d(y2n, y

1
n)

≤ (1− α2
n)d

(

z2n,W

(

y1n, u
2
n,

β2
n

1− α2
n

))

+ α2
nd(z

2
n, y

1
n) + (1 − α2

n − β2
n)d

(

u2
n, y

1
n

)

.
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Then, we have

d(z2n, y
1
n) ≤

(

1− α2
n − β2

n

1−m

)

d
(

u2
n, y

1
n

)

+ d

(

z2n,W

(

y1n, u
2
n,

β2
n

1− α2
n

))

.

Hence, we obtain

(18) lim
n→∞

d(z2n, y
1
n) = 0.

It follows from (13) that

(19) d(xn, y
1
n) ≤ α1

nd(z
1
n, xn) + (1− α1

n − β1
n)d

(

u1
n, xn

)

→ 0 as n → ∞.

Using (18), (19) and the fact that z2n ∈ T2y
1
n, we get

d(xn, T2xn) ≤ d(xn, y
1
n) + d(y1n, z

2
n) + d(z2n, T2xn)

≤ d(xn, y
1
n) + d(y1n, z

2
n) +H(T2y

1
n, T2xn)

≤ (1 + L)d(xn, y
1
n) + d(y1n, z

2
n) → 0 as n → ∞.

Continuing the above process, we can prove that

lim
n→∞

d(yin, p) = r, lim
n→∞

d(zin, y
i−1
n ) = 0 and lim

n→∞

d(xn, Tixn) = 0

for all i = 3, . . . , N − 1. Using limn→∞
d(xn+1, p) = r, we can also get that

lim
n→∞

d(zNn , yN−1
n ) = 0 and lim

n→∞

d(xn, TNxn) = 0.

Consequently, limn→∞
d(xn, Tixn) = 0 for each i = 1, 2, . . . , N. �

Our next result deals with the △-convergence of the iteration schemes (C)
in a hyperbolic space.

Theorem 2.3. Let X,K and {xn} satisfy the hypotheses of Lemma 2.2, X be

complete and let {Ti}Ni=1 be the family of multi-valued nonexpansive maps from

K into CB(K) such that Tip = {p} for all p ∈ F and i = 1, 2, . . . , N . Then

the sequence {xn} is △-convergent to a point in F .

Proof. It follows from Lemma 2.1 that {xn} is bounded. Therefore by Lemma
1.1, {xn} has a unique asymptotic center, that is, AK({xn}) = {x} . Let {un}
be any subsequence of {xn} such that AK({un}) = {u} . It follows from Lemma
2.2 that

(20) lim
n→∞

d(un, Tiun) = 0 for each i = 1, 2, . . . , N.

Now, we claim that u is a common fixed point of {Ti}Ni=1. For each i =
1, 2, . . . , N , we define a sequence {zm} in K by zm ∈ Tiu. So, we calculate

d(zm, un) ≤ d(zm, Tiun) + d(Tiun, un)

≤ H(Tiu, Tiun) + d(Tiun, un)

≤ d(u, un) + d(Tiun, un).
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Taking limsup on both sides of the above inequality and using (20), we have

r(zm, {un}) = lim sup
n→∞

d(zm, un) ≤ lim sup
n→∞

d(u, un) = r(u, {un}).

This implies that |r(zm, {un})− r(u, {un})| → 0 as m → ∞. It follows from

Lemma 1.4 that limm→∞
zm = u. Since {Tiu}Ni=1 is the finite family of closed

set, therefore u ∈ Tiu for each i = 1, 2, . . . , N. Hence u ∈ F . Next, we
claim that for the common fixed point u, {u} is the unique asymptotic cen-
ter for each subsequence {un} of {xn} . Assume contrarily, that is, x 6= u.
Since limn→∞

d(xn, u) exists (by Lemma 2.1), therefore by the uniqueness of
asymptotic center, we have

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u)

= lim sup
n→∞

d(un, u)

a contradiction. Hence, we get that x = u. Since {un} is an arbitrary subse-
quence of {xn}, therefore A({un}) = {u} for each subsequence {un} of {xn}.
This proves that the sequence {xn} is △-convergent to a common fixed point

of {Ti}Ni=1. �

The following result gives a necessary and sufficient condition for the strong
convergence of the iteration scheme (C) in a hyperbolic space.

Theorem 2.4. Let X,K, {Ti}Ni=1 and {xn} satisfy the hypotheses of Lemma

2.2 and X be complete. Then the sequence {xn} is convergent strongly to some

p ∈ F if and only if lim infn→∞
d(xn, F ) = 0.

Proof. If {xn} converges to p ∈ F, then limn→∞
d(xn, p) = 0. Since 0 ≤

d(xn, F ) ≤ d(xn, p), we have lim infn→∞
d(xn, F ) = 0. Conversely, suppose

that lim infn→∞
d(xn, F ) = 0. It follows from Lemma 2.1 that limn→∞

d(xn, F )
exists. Thus by hypothesis, we get limn→∞

d(xn, F ) = 0. The proof of the

remaining part follows the proof of Theorem 2.5 in [7] with hN
n = M

∑N
i=1(1−

αi
n − βi

n) for some M > 0 as in Lemma 2.1. �

Remark 2.5. In Theorem 2.4, the condition lim infn→∞
d(xn, F ) = 0 may be

replaced with lim supn→∞

d(xn, F ) = 0.

Now, we give an example to illustrate Theorem 2.3 and Theorem 2.4.

Example 2.6. Let K = [0, 1] be endowed with the Euclidean metric and

Ti : K → CB(K) be defined by Ti (x) =
[

0, x
i+1

]

for each i = 1, 2, . . . , N.

It is proved in [12, Example 2] that both T1 and T3 are multi-valued non-

expansive mappings. Similarly, {Ti}Ni=1 is the family of multi-valued nonex-
pansive mappings. Therefore, it is the family of multi-valued Lipschitzian
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quasi-nonexpansive maps. Obviously, F = {0}. For each i = 1, 2, . . . , N, we

set αi
n = 1

4 , β
i
n = 3n2+6n−1

4(n+1)2 for all n ≥ 1. It is easy to see that

∞

∑

n=1

(1− αi
n − βi

n) =

∞

∑

n=1

(

1− 1

4
− 3n2 + 6n− 1

4(n+ 1)2

)

=

∞

∑

n=1

1

(n+ 1)2
< ∞

for each i = 1, 2, . . . , N . Hence the results of Theorem 2.3 and Theorem 2.4
can be easily seen.

Recall that a multi-valued map T : K → 2K is semi-compact if every
bounded sequence {xn} ⊂ K satisfying d(xn, T xn) → 0 as n → ∞ has a
strongly convergent subsequence.

Gu and He [10] defined the concept of condition (A
′

) as follows.

N multi-valued maps {Ti}Ni=1 are said to satisfy the condition (A
′

) if there
exists a non-decreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0
for all r ∈ (0,∞) such that

f(d(x, F )) ≤ 1

N

N
∑

i=1

d(x, Tix) for all x ∈ K.

By using the above definitions, we prove the strong convergence results of
the iteration scheme (C) in a hyperbolic space.

Theorem 2.7. Let X,K, {Ti}Ni=1 and {xn} be the same as in Theorem 2.4.

(i) If one of the maps {Ti}Ni=1 is semi-compact, then the sequence {xn} is

convergent strongly to a point in F.

(ii) If {Ti}Ni=1 satisfy condition (A
′

), then the sequence {xn} is convergent

strongly to a point in F.

Proof. (i) It follows from Lemma 2.1 that {xn} is bounded. Moreover, Lemma
2.2 implies that limn→∞

d(xn, Tixn) = 0 for each i = 1, 2, . . . , N . Then, by
the semi-compactness of T1 (say), there exists a subsequence {xnk

} ⊂ {xn}
such that {xnk

} converges strongly to some point p ∈ K. Moreover, by the
continuity of Ti, for each i = 1, 2, . . . , N

d(p, Tip) = lim
k→∞

d(xnk
, Tixnk

) = 0.

This implies that p ∈ F . Again, by Lemma 2.1, limn→∞
d(xn, p) exists. Hence

p is the strong limit of the sequence {xn}. As a result, the sequence {xn} is
convergent strongly to a point p in F .

(ii) By virtue of Lemma 2.1, limn→∞
d(xn, F ) exists. Further, by condition

(A
′

) and Lemma 2.2, we have

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

1

N

N
∑

i=1

d(xn, Tixn) = 0.

That is, limn→∞
f (d(xn, F )) = 0. Since f is a non-decreasing function sat-

isfying f (0) = 0 and f (r) > 0 for all r ∈ (0,∞), it follows that limn→∞
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d (xn, F ) = 0. Then Theorem 2.4 implies that the sequence {xn} is convergent
strongly to a point in F . �

Remark 2.8. Since each multi-valued nonexpansive map is Lipschitzian quasi-
nonexpansive, Theorem 2.4 and Theorem 2.7 hold for the finite family of multi-
valued nonexpansive maps.

For further development, we need the following technical result.

Lemma 2.9 ([17, Lemma 2.2]). Let K be a nonempty subset of a metric space

(X, d) and let T : K → P (K) be a multi-valued mapping. Then

(i) d(x, T (x)) = d(x, PT (x)) for all x ∈ K;
(ii) x ∈ F (T ) ⇐⇒ x ∈ F (PT ) ⇐⇒ PT (x) = {x};
(iii) F (T ) = F (PT ).

To avoid the restriction of {Ti}Ni=1, that is, Tip = {p} for all p ∈ F and i =
1, 2, . . . , N , we use the iteration scheme defined by (D). Since the calculations
in the following theorem are similar to those in the above results with the help
of Lemma 2.9, we omit its proof.

Theorem 2.10. Let X and K be the same as in Theorem 2.3. Suppose

that {Ti}Ni=1 is the family of multi-valued maps from K into P (K) such that

{PTi
}Ni=1 are nonexpansive. If {xn} is the sequence defined by (D) with 0 <

l ≤ αi
n ≤ m < 1 and

∑

∞

n=1(1 − αi
n − βi

n) < ∞ for all i = 1, 2, . . . , N , then the

followings hold:
(i) The sequence {xn} is △-convergent to a point in F .

(ii) The sequence {xn} is convergent strongly to some p ∈ F if and only if

lim inf
n→∞

d(xn, F ) = 0 or lim sup
n→∞

d(xn, F ) = 0.

(iii) If one of the maps {Ti}Ni=1 is semi-compact or {Ti}Ni=1 satisfy condition

(A
′

), then the sequence {xn} is convergent strongly to a point in F.

Remark 2.11. Our results generalize the results of Fukhar-ud-din et al. [7] since
the iteration schemes (C) and (D) is reduced to (A) and (B), respectively, when
N = 2.
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