THE MINIMAL FREE RESOLUTION OF THE UNION OF TWO LINEAR STAR-CONFIGURATIONS IN \mathbb{P}^{2}

Yong-Su Shin

Abstract

In [1], the authors proved that the finite union of linear starconfigurations in \mathbb{P}^{2} has a generic Hilbert function. In this paper, we find the minimal graded free resolution of the union of two linear starconfigurations in \mathbb{P}^{2} of type $s \times t$ with $\binom{t}{2} \leq s$ and $3 \leq t$.

1. Introduction

Throughout the paper, let $R=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ be an $(n+1)$-variable polynomial ring over an algebraically closed field \mathbb{k} of any characteristic, and the symbol \mathbb{P}^{n} will denote the projective n-space over the field \mathbb{k}. Let $\mathbb{X}=\left\{P_{1}, \ldots, P_{s}\right\}$ be a set of distinct points in $\mathbb{P}^{n}(n<s)$. Then $I=I_{\mathbb{X}}$ is the defining ideal of \mathbb{X} and the ring $A=R / I$ is called the homogeneous coordinate ring of \mathbb{X}. Then the Hilbert function of $A=\bigoplus_{t \geq 0} R_{t} / I_{t}$ or of \mathbb{X} is defined by

$$
\mathbf{H}(A, t)=\mathbf{H}_{\mathbb{X}}(t)=\operatorname{dim}_{k} A_{t} .
$$

We say that \mathbb{X} has a generic Hilbert function if

$$
\mathbf{H}_{\mathbb{X}}(t)=\min \left\{\binom{t+n}{n},|\mathbb{X}|\right\}
$$

for all $t \geq 0$.
Since the ring $A=R / I$ has homological dimension $n, R / I$ has a minimal graded free resolution \mathbb{F}, as an R-module, of the form:

$$
\mathbb{F}: \quad 0 \rightarrow \mathbb{F}_{n} \rightarrow \cdots \rightarrow \mathbb{F}_{i} \xrightarrow{\varphi_{i}} \mathbb{F}_{i-1} \rightarrow \cdots \rightarrow \mathbb{F}_{1} \rightarrow R \rightarrow R / I \rightarrow 0,
$$

where the \mathbb{F}_{i} 's are free graded R-modules and the image of each homomorphism φ_{i} of free modules in the resolution lies in $\left(x_{0}, x_{1}, \ldots, x_{n}\right) \mathbb{F}_{i-1}$. In fact,

$$
\mathbb{F}_{i}:=\bigoplus_{t=0}^{r_{i}} R(-(i+1+t))^{\beta_{i, i+1+t}}
$$

Received November 14, 2015; Revised January 20, 2016.
2010 Mathematics Subject Classification. Primary 13A02; Secondary 16W50.
Key words and phrases. minimal graded free resolution, Hilbert function, generic Hilbert function, star-configurations.

This research was supported by a grant from Sungshin Womens University in 2015.

The numbers $\left\{\beta_{i, j}\right\}$ for $0 \leq i \leq n$ are called the $i^{\text {th }}$ graded Betti numbers of the ideal I. With this resolution, note that $\operatorname{rank} F_{1}$ is the minimal number of generators of the ideal I. Since R / I is a Cohen-Macaulay ring, $\operatorname{rank} F_{n}$ is the Cohen-Macaulay type of R / I.

Recently, a star-configuration in \mathbb{P}^{n} has been extensively studied (see [1, $2,3,4,6,8,9,10,11])$. In $[2]$, the authors found the minimal graded free resolution of a star-configuration in \mathbb{P}^{n} of codimension 2 , and in [9] the authors found the minimal graded free resolution of a star-configuration in \mathbb{P}^{n} of any codimension $2 \leq r \leq n$. Moreover, in [1], they proved that any finite union of linear star-configurations in \mathbb{P}^{2} has a generic Hilbert function.

In this paper, we shall be mainly concerned with the number of minimal generators of the ideal $I_{\mathbb{X}}$ and the minimal graded free resolution of $R / I_{\mathbb{X}}$, where \mathbb{X} is the union of two linear star-configurations in \mathbb{P}^{2}.

2. Star-configurations

To introduce a star-configuration, we start with a variety of some specific ideal of R.

Definition 2.1. Let $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field \mathbb{k}. For positive integers r and s with $1 \leq r \leq \min \{n, s\}$, suppose F_{1}, \ldots, F_{s} are general forms in R of degrees d_{1}, \ldots, d_{s}, respectively. We call the variety \mathbb{X} defined by the ideal

$$
\bigcap_{1 \leq i_{1}<\cdots<i_{r} \leq s}\left(F_{i_{1}}, \ldots, F_{i_{r}}\right)
$$

a star-configuration in \mathbb{P}^{n} of type (r, s). If F_{1}, \ldots, F_{s} are general linear forms in R, then we call \mathbb{X} a linear star-configuration in \mathbb{P}^{n} of type (r, s).

In particular, if $r=2$, then we simply call \mathbb{X} a star-configuration in \mathbb{P}^{n} of type s.

Theorem 2.2 ([9, Theorem 3.4]). Let $\mathbb{X}^{(r, s)}$ be a star-configuration in \mathbb{P}^{n} of type (r, s) defined by general forms F_{1}, \ldots, F_{s} in $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ of degrees $d_{1}, d_{2}, \ldots, d_{s}$, where $2 \leq r \leq \min \{s, n\}$, and let $d=d_{1}+\cdots+d_{s}$. Then the minimal free resolution of $I_{\mathbb{X}(r, s)}$ is

$$
\begin{equation*}
0 \rightarrow \mathbb{F}_{r}^{(r, s)} \rightarrow \mathbb{F}_{r-1}^{(r, s)} \rightarrow \cdots \rightarrow \mathbb{F}_{1}^{(r, s)} \rightarrow I_{\mathbb{X}^{(r, s)}} \rightarrow 0 \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbb{F}_{r}^{(r, s)} & =R^{\alpha_{r}^{(r, s)}}(-d), \\
\mathbb{F}_{r-1}^{(r, s)} & =\bigoplus_{1 \leq i_{1} \leq s} R^{\alpha_{r-1}^{(r, s)}}\left(-\left(d-d_{i_{1}}\right)\right), \\
& \vdots \\
\mathbb{F}_{\ell}^{(r, s)} & =\bigoplus_{1 \leq i_{1}<\cdots<i_{r-\ell} \leq s} R^{\alpha_{\ell}^{(r, s)}}\left(-\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-\ell}}\right)\right)\right),
\end{aligned}
$$

$$
\begin{gathered}
\mathbb{F}_{2}^{(r, s)}=\bigoplus_{1 \leq i_{1}<\cdots<i_{r-2} \leq s} R^{\alpha_{2}^{(r, s)}}\left(-\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-2}}\right)\right)\right), \quad \text { and } \\
\mathbb{F}_{1}^{(r, s)}=\bigoplus_{1 \leq i_{1}<\cdots<i_{r-1} \leq s} R^{\alpha_{1}^{(r, s)}}\left(-\left(d-\left(d_{i_{1}}+\cdots+d_{i_{r-1}}\right)\right)\right), \\
t h \\
\alpha_{\ell}^{(r, s)}=\binom{s-r+\ell-1}{\ell-1} \quad \text { and } \quad \operatorname{rank} \mathbb{F}_{\ell}^{(r, s)}=\binom{s-r+\ell-1}{\ell-1} \cdot\binom{s}{r-\ell}
\end{gathered}
$$

with
for $1 \leq \ell \leq r$. In particular, the last free module $\mathbb{F}_{r}^{(r, s)}$ has only one shift d, i.e., a star-configuration $\mathbb{X}^{(r, s)}$ in \mathbb{P}^{n} is level. Furthermore, any star-configuration $\mathbb{X}^{(r, s)}$ in \mathbb{P}^{n} is aCM.

3. Minimal free resolutions of the union of two linear star-configurations in \mathbb{P}^{2} of type $t \times s$

In this section, let $\mathbb{X}^{(s, t)}:=\mathbb{X} \dot{\cup} \mathbb{Y}$ be the disjoint union of two linear starconfigurations \mathbb{X} and \mathbb{Y} in \mathbb{P}^{2} of type s and t (type $s \times t$ for short), otherwise specified. Assume that \mathbb{X} is defined by general forms L_{1}, \ldots, L_{s} and \mathbb{Y} is defined by general forms M_{1}, \ldots, M_{t} in $R=\mathbb{k}\left[x_{0}, x_{1}, x_{2}\right]$, respectively.

For the rest of this section, we define \mathbb{X}^{\prime} as a linear star-configuration in \mathbb{P}^{2} defined by linear forms L_{1}, \ldots, L_{s-1}, and let $\mathbb{X}^{(s-1, t)}:=\mathbb{X}^{\prime} \cup \mathbb{Y}$.

Let I be a homogeneous ideal of $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. We denote the minimal number of generators of I by $\nu(I)$, and if d_{1}, \ldots, d_{ℓ} are the degrees of the minimal generators of I, then we denote by $\Delta(I)$ the multi-set $\left\{d_{1}, \ldots, d_{\ell}\right\}$. This is somewhat unorthodox since some of the d_{j} 's might be equal to each other. Furthermore, we sometimes denote by $\nu_{i}:=\nu_{i}(I)$ the number of minimal generators of I in degree i.

We now introduce some known results due to Geramita and Marocia (see [5]), which we shall often use in this section.
Proposition 3.1 ([5, Proposition 1.1]). Let $I:=I_{\mathbb{X}}$ be an ideal of a finite set \mathbb{X} of points in \mathbb{P}^{n}. If $I=I_{\alpha} \oplus I_{\alpha+1} \oplus \cdots$, then

$$
I=\left(I_{\alpha}, I_{\alpha+1}, \ldots, I_{\sigma}\right)
$$

where $\alpha:=\alpha(I)$ is the initial degree of the ideal I and

$$
\sigma:=\min \{i \mid \mathbf{H}(R / I, i)=\mathbf{H}(R / I, i-1)\} .
$$

Theorem 3.2 ([1]). Let $\mathbb{X}^{\left(s_{1}, \ldots, s_{\ell}\right)}$ be the union of linear star-configurations in \mathbb{P}^{2} of type s_{1}, \ldots, s_{ℓ} with $2 \leq \ell$ and $2 \leq s_{i}$ for every $1 \leq i \leq \ell$. Then $\mathbb{X}^{\left(s_{1}, \ldots, s_{\ell}\right)}$ has a generic Hilbert function.

Hence, by Theorem 3.2 and Proposition 3.1, the ideal of the union of two linear star-configurations in \mathbb{P}^{2} of type $s \times t$ has minimal generators in one or two degrees when $3 \leq t \leq s$.

Lemma 3.3. Let \mathbb{X} and \mathbb{Y} be linear star-configurations in \mathbb{P}^{2} of type $s \times t$ with $\binom{t}{2}=s$. Then the minimal graded free resolution of $R / I_{\mathbb{X} \cup \cup}$ is

$$
0 \rightarrow R^{s}(-(s+1)) \rightarrow R^{s+1}(-s) \rightarrow R \rightarrow R / I_{\mathbb{X} \cup \cup \mathbb{Y}} \rightarrow 0
$$

Proof. By Theorem 3.2, the Hilbert function of $R / I_{\mathbb{X} \cup \mathbb{Y}}$ is

$$
\begin{aligned}
\mathbf{H}_{\mathbb{X} \cup \mathbb{Y}}: & 1
\end{aligned}\binom{1+2}{2} \quad \cdots \quad\binom{(s-2)+2}{2} \quad\binom{(s-1)+2}{2} \rightarrow .
$$

Note that

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{k}}\left(I_{\mathbb{X} \cup \mathbb{Y}}\right)_{s} & =\binom{s+2}{2}-\mathbf{H}_{\mathbb{X} \cup \mathbb{Y}}(s) \\
& =\binom{s+2}{2}-\operatorname{deg}(\mathbb{X} \dot{\cup} \mathbb{Y}) \\
& =\binom{s+2}{2}-\binom{s+1}{2}=s+1,
\end{aligned}
$$

and

$$
\alpha\left(I_{\mathbb{X} \cup \mathbb{Y}}\right)=\sigma\left(I_{\mathbb{X} \cup \mathbb{Y}}\right) .
$$

Hence, by Proposition 3.1, $\nu\left(I_{\mathbb{X} \cup \mathbb{Y}}\right)=s+1$ and $\Delta\left(I_{\mathbb{X} \cup \mathfrak{Y}}\right)=\{\overbrace{s, \ldots, s}^{(s+1) \text {-times }}\}$, and so by the Hilbert-Burch Theorem, we obtain the minimal graded free resolution of $R / I_{\mathbb{X} \cup \mathcal{Y}}$ as above, which completes the proof.
Lemma 3.4. Let \mathbb{X} and \mathbb{Y} be as in Lemma 3.3 with $\binom{t}{2}+1=s$. Then the minimal graded free resolution of $R / I_{\mathbb{X} \cup \mathbb{Y}}$ is

$$
0 \rightarrow R^{s-1}(-(s+1)) \rightarrow R(-(s-1)) \oplus R^{s-1}(-s) \rightarrow R \rightarrow R / I_{X \cup \cup Y} \rightarrow 0
$$

Proof. By Theorem 3.2, the Hilbert function of $R / I_{\mathbb{X U Y}}$ is

$$
\begin{gathered}
\mathbf{H}_{\mathbb{X} \cup \mathbb{Y}}: 1 \quad\binom{1+2}{2} \quad \cdots \quad\binom{(s-2)+2}{2} \quad\binom{(s-1)+2}{2}-1 \rightarrow . \\
\binom{s}{2}+\binom{t}{2}
\end{gathered}
$$

Note that

$$
\sigma\left(I_{\mathbb{X} \cup \mathbb{Y}}\right)=\alpha\left(I_{\mathbb{X} \cup \mathbb{Y}}\right)+1
$$

Since $\operatorname{dim}_{\mathbb{k}}\left(I_{\mathbb{X} \cup \cup \mathbb{Y}}\right)_{s-1}=1$, that is, $\operatorname{dim}_{\mathbb{k}} R_{1}\left(I_{\mathbb{X} \cup \mathbb{Y}}\right)_{s-1}=3$, and

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{k}}\left(I_{\mathbb{X} \cup \mathbb{Y}}\right)_{s} & =\binom{s+2}{2}-\mathbf{H}_{\mathbb{X} \cup \mathbb{Y}}(s) \\
& =\binom{s+2}{2}-\operatorname{deg}(\mathbb{X} \dot{\cup} \mathbb{Y})
\end{aligned}
$$

$$
=\binom{s+2}{2}-\left[\binom{s+1}{2}-1\right]=s+2
$$

we get that

$$
\nu_{s}\left(I_{\mathbb{X} \cup \mathbb{Y}}\right)=(s+2)-3=s-1 .
$$

Hence, by Proposition 3.1, $\nu\left(I_{\mathbb{X} \cup \mathbb{Y}}\right)=s$ and $\Delta\left(I_{\mathbb{X} \dot{\mathbb{Y}}}\right)=\{s-1, \overbrace{s, \ldots, s}^{(s-1) \text {-times }}\}$, and so by the Hilbert-Burch Theorem, we obtain the minimal graded free resolution of $R / I_{\mathbb{X} \cup \mathbb{Y}}$ as above, which completes the proof.

Theorem 3.5. Let \mathbb{X} and \mathbb{Y} be as in Lemma 3.3 with $\binom{t}{2}+\ell=s$ with $0 \leq \ell$, and let $\mathbb{X}^{(s, t)}:=\mathbb{X} \cup \mathbb{Y}$. Then the minimal graded free resolution of $R / I_{\mathbb{X}(s, t)}$ is
$0 \rightarrow R^{s-\ell}(-(s+1)) \rightarrow R^{\ell}(-(s-1)) \bigoplus R^{s-2 \ell+1}(-s) \rightarrow R \rightarrow R / I_{\mathbb{X}(s, t)} \rightarrow 0$
for $0 \leq \ell \leq\binom{ t}{2}$,
$0 \rightarrow R^{\ell-\binom{t}{2}-1}(-s) \bigoplus R^{\binom{t}{2}}(-(s+1)) \rightarrow R^{\ell}(-(s-1)) \rightarrow R \rightarrow R / I_{\mathbb{X}^{(s, t)}} \rightarrow 0$
for $\binom{t}{2}<\ell$.
Proof. We shall prove this by induction on ℓ.
Case 1. Let $0 \leq \ell \leq\binom{ t}{2}$. If $\ell=0$ or 1 , then by Lemmas 3.3 and 3.4 it holds. Now suppose $1<\ell \leq\binom{ t}{2}$. By Theorem 3.2, the Hilbert function of $R / I_{\mathbb{X}^{(s, t)}}$ is

$$
\begin{aligned}
\mathbf{H}_{\mathbb{X}^{(s, t)}}: 1 & \binom{1+2}{2} \quad \ldots
\end{aligned} \begin{gathered}
\binom{(s-2)+2}{2}
\end{gathered} \begin{gathered}
\binom{(s-1)+2}{2}-\ell \rightarrow . \\
\binom{s}{2}+\binom{t}{2}
\end{gathered}
$$

Since $I_{\mathbb{X}(s, t)}$ has ℓ-generators G_{1}, \ldots, G_{ℓ} in degree $s-1$, for a general linear form $L:=x_{0}$ in R, by induction on ℓ we may assume that $x_{0} \mid G_{1}, \ldots, G_{\ell-1}$, and $x_{0} \nmid G_{\ell}$. Note that

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{k}}\left[I_{\mathbb{X}(s-1, t)}\right]_{s-2} & =\binom{(s-2)+2}{2}-\left[\binom{s-1}{2}+\binom{t}{2}\right] \\
& =\binom{(s-2)+2}{2}-\left[\binom{s-1}{2}+s-\ell\right] \\
& =\ell-1 .
\end{aligned}
$$

Hence $I_{\mathbb{X}^{(s-1, t)}}$ has $(\ell-1)$-generators $K_{1}, \ldots, K_{\ell-1}$ in degree $s-2$, and by induction on ℓ,

$$
((s-1)-2(\ell-1)+1)=(s-2 \ell+2)
$$

generators $Q_{1}, \ldots, Q_{s-2 \ell+2}$ in degree $s-1$, respectively. This implies that

$$
G_{\ell} \in\left(I_{\mathbb{X}^{(s, t)}}\right)_{s-1} \subseteq\left(I_{\mathbb{X}^{(s-1, t)}}\right)_{s-1}=R_{1}\left\langle K_{1}, \ldots, K_{\ell-1}\right\rangle+\left\langle Q_{1}, \ldots, Q_{s-2 \ell+2}\right\rangle
$$

and so for some $a_{i} \in \mathbb{k}$ and linear forms $H_{j} \in R_{1}$

$$
G_{\ell}=\sum_{j=1}^{\ell-1} H_{j} K_{j}+\sum_{i=1}^{s-2 \ell+2} a_{i} Q_{i}
$$

Since G_{ℓ} vanishes on $(s-1)$-points in $\mathbb{X}^{(s, t)}-\mathbb{X}^{(s-1, t)}$, which lie on the line defined by x_{0}, we see that G_{ℓ} can be chosen to satisfy the condition $G_{\ell} \notin$ $R_{1}\left\langle K_{1}, \ldots, K_{\ell-1}\right\rangle$. Note that, by induction ℓ,

$$
R_{1}\left\langle K_{1}, \ldots, K_{\ell-1}\right\rangle=\left\langle F_{1}, \ldots, F_{3(\ell-1)}\right\rangle .
$$

So

$$
R_{1}\left\langle G_{1}, \ldots, G_{\ell-1}\right\rangle=x_{0} R_{1}\left\langle K_{1}, \ldots, K_{\ell-1}\right\rangle=\left\langle x_{0} F_{1}, \ldots, x_{0} F_{3(\ell-1)}\right\rangle
$$

i.e.,

$$
\operatorname{dim}_{k} R_{1}\left\langle G_{1}, \ldots, G_{\ell-1}\right\rangle=3(\ell-1)
$$

Since $G_{\ell} \notin\left\langle F_{1}, \ldots, F_{3(\ell-1)}\right\rangle$, it is obvious that

$$
\left\{x_{0} F_{1}, \ldots, x_{0} F_{3(\ell-1)}, x_{0} G_{\ell}\right\}
$$

is linearly independent. Assume that for some α_{i} and β_{j} in \mathbb{k}

$$
\alpha_{1} x_{0} F_{1}+\cdots+\alpha_{3(\ell-1)} x_{0} F_{3(\ell-1)}+\beta_{0} x_{0} G_{\ell}=\beta_{1} x_{1} G_{\ell}+\beta_{2} x_{2} G_{\ell}
$$

Then

$$
x_{0} \mid\left(\beta_{1} x_{1}+\beta_{2} x_{2}\right) G_{\ell}
$$

That is,

$$
x_{0} \mid\left(\beta_{1} x_{1}+\beta_{2} x_{2}\right) \quad \text { or } \quad x_{0} \mid G_{\ell},
$$

which is a contradiction. This implies that

$$
\left\{x_{0} F_{1}, \ldots, x_{0} F_{3(\ell-1)}, x_{0} G_{\ell}, x_{1} G_{\ell}, x_{2} G_{\ell}\right\}
$$

is also linearly independent. In other words,
$\operatorname{dim}_{\mathbb{k}}\left\langle x_{0} F_{1}, \ldots, x_{0} F_{3(\ell-1)}, x_{0} G_{\ell}, x_{1} G_{\ell}, x_{2} G_{\ell}\right\rangle=\operatorname{dim}_{\mathbb{k}} R_{1}\left\langle G_{1}, \ldots, G_{\ell-1}, G_{\ell}\right\rangle=3 \ell$.
Moreover, since

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{k}}\left(I_{\mathbb{X}(s, t)}\right)_{s} & =\binom{s+2}{2}-\left[\binom{s}{2}+\binom{t}{2}\right] \\
& =\binom{s+2}{2}-\left[\binom{s}{2}+s-\ell\right] \\
& =s+\ell+1,
\end{aligned}
$$

we get that $\nu_{s}\left(I_{\mathbb{X}(s, t)}\right)=(s+\ell+1)-3 \ell=s-2 \ell+1$. Hence, by Proposition 3.1, $\nu\left(I_{\mathbb{X}(s, t)}\right)=s-\ell+1$ and $\Delta\left(I_{\mathbb{X}(s, t)}\right)=\{\underbrace{s-1, \ldots, s-1}_{\ell \text {-times }}, \underbrace{s, \ldots, s}_{(s-2 \ell+1) \text {-times }}\}$, as we wished.

Case 2. Let $\binom{t}{2}<\ell$. If $\ell=\binom{t}{2}+1$ and $L_{s}:=x_{0}$, i.e., $\ell-1=\binom{t}{2}$, then

$$
s-1=\binom{t}{2}+(\ell-1)=\binom{t}{2}+\binom{t}{2},
$$

and so by Case 1,

$$
\Delta\left(I_{\mathbb{X}^{(s-1, t)}}\right)=\{\underbrace{s-2, \ldots, s-2}_{(\ell-1) \text {-times }}, s-1\} .
$$

Note that $I_{\mathbb{X}(s, t)}$ has ℓ-generators $G_{1}, \ldots, G_{\ell-1}, G_{\ell}$ in R_{s-1}, and by induction on s, we may assume that $x_{0} \mid G_{i}$ for $1 \leq i \leq \ell-1$ and $x_{0} \nmid G_{\ell}$. Let $G_{i}=x_{0} K_{i}$ for such i, where $\left(I_{\mathbb{X}(s-1, t)}\right)_{s-2}=\left\langle K_{1}, \ldots, K_{\ell-1}\right\rangle$. By induction on $s, \operatorname{dim}_{\mathbb{k}} R_{1}\left(I_{\mathbb{X}^{(s-1, t)}}\right)_{s-2}=3(\ell-1)$. Moreover,

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{k}}\left(I_{\mathbb{X}(s-1, t)}\right)_{s-1} & =\binom{(s-1)+2}{2}-\left[\binom{s-1}{2}+\binom{t}{2}\right] \\
& =s+\ell-1 \\
& =3(\ell-1)+1,
\end{aligned}
$$

and hence

$$
\begin{aligned}
R_{1}\left(I_{\left.\mathbb{X}^{(s-1, t)}\right)}\right)_{s-2} & :=\left\langle F_{1}, \ldots, F_{3(\ell-1)}\right\rangle \text { and } \\
\quad\left(I_{\mathbb{X}^{(s-1, t)}}\right)_{s-1} & =\left\langle F_{1}, \ldots, F_{3(\ell-1)}, F_{3(\ell-1)+1}\right\rangle
\end{aligned}
$$

for some $F_{i} \in R_{s-1}$. Since

$$
\begin{aligned}
G_{\ell} \in\left(I_{\mathbb{X}(s, t)}\right)_{s-1} & \subseteq\left(I_{\mathbb{X}(s-1, t)}\right)_{s-1} \\
& =\left\langle F_{1}, \ldots, F_{3(\ell-1)}, F_{3(\ell-1)+1}\right\rangle \\
& =R_{1}\left\langle K_{1}, \ldots, K_{\ell-1}\right\rangle+\left\langle F_{3(\ell-1)+1}\right\rangle
\end{aligned}
$$

we get that

$$
G_{\ell}=\left[\sum_{i=1}^{3(\ell-1)} \alpha_{i} F_{i}\right]+\alpha_{3(\ell-1)+1} F_{3(\ell-1)+1}
$$

for some $\alpha_{i} \in \mathbb{k}$. Note that

$$
3(\ell-1)-(s-1)=\binom{t}{2}-1>0
$$

and G_{ℓ} vanishes on $(s-1)$-points in $\mathbb{X}^{(s, t)}-\mathbb{X}^{(s-1, t)}$, which lie on the line defined by x_{0}, and so there is a non-trivial solution $\alpha_{i} \in \mathbb{k}$ with $\alpha_{3(\ell-1)+1}=1$. In other words,

$$
x_{0} G_{\ell}=x_{0} \cdot\left[\sum_{i=1}^{3(\ell-1)} \alpha_{i} F_{i}\right]+x_{0} F_{3(\ell-1)+1}
$$

and so

$$
\begin{aligned}
\left\langle x_{0} F_{1}, \ldots, x_{0} F_{3(\ell-1)+1}, x_{0} G_{\ell}\right\rangle & =\left\langle x_{0} F_{1}, \ldots, x_{0} F_{3(\ell-1)}, x_{0} F_{3(\ell-1)+1}\right\rangle, \\
& \text { and } \\
\left\langle x_{0} F_{1}, \ldots, x_{0} F_{3(\ell-1)+1}, x_{0} G_{\ell}\right\rangle & =\left\langle x_{0} F_{1}, \ldots, x_{0} F_{3(\ell-1)}, x_{0} G_{\ell}\right\rangle .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& R_{1}\left(I_{\mathbb{X}(s, t)}\right)_{s-1} \\
= & R_{1}\left\langle G_{1}, \ldots, G_{\ell-1}, G_{\ell}\right\rangle \\
= & R_{1}\left\langle G_{1}, \ldots, G_{\ell-1}\right\rangle+R_{1}\left\langle G_{\ell}\right\rangle \\
= & R_{1}\left\langle x_{0} K_{1}, \ldots, x_{0} K_{\ell-1}\right\rangle+R_{1}\left\langle G_{\ell}\right\rangle \\
= & x_{0} R_{1}\left\langle K_{1}, \ldots, K_{\ell-1}\right\rangle+R_{1}\left\langle G_{\ell}\right\rangle \\
= & \left\langle x_{0} F_{1}, \ldots, x_{0} F_{3(\ell-1)}, x_{0} G_{\ell}, x_{1} G_{\ell}, x_{2} G_{\ell}\right\rangle \\
= & \left.\left\langle x_{0} F_{1}, \ldots, x_{0} F_{3(\ell-1)}, x_{0} F_{3(\ell-1)+1}, x_{1} G_{\ell}, x_{2} G_{\ell}\right\rangle \quad \text { (by equation }(3.1)\right) .
\end{aligned}
$$

By the same argument as in the previous case, one can show that

$$
\left\{x_{0} F_{1}, \ldots, x_{0} F_{3(\ell-1)}, x_{0} F_{3(\ell-1)+1}, x_{1} G_{\ell}, x_{2} G_{\ell}\right\}
$$

is linearly independent. Hence

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{k}} R_{1}\left(I_{\mathbb{X}(s, t)}\right)_{s-1}=3 \ell \tag{3.2}
\end{equation*}
$$

Note that

$$
\begin{aligned}
\binom{s+2}{2}-3 \ell & =\binom{s}{2}+(2 s+1)-3 \ell \\
& =\binom{s}{2}+(2 s+1)-3\left(\binom{t}{2}+1\right) \\
& =\binom{s}{2}+\binom{t}{2} \quad\left(\text { since } s=2 \cdot\binom{t}{2}+1\right) \\
& =\mathbf{H}_{\mathbb{X}(s, t)}(s) .
\end{aligned}
$$

In other words,

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{k}}\left(I_{\mathbb{X}(s, t)}\right)_{s}=\binom{s+2}{2}-\mathbf{H}_{\mathbb{X}(s, t)}(s)=3 \ell, \text { and so, by equation }(3.2), \\
& \operatorname{dim}_{\mathbb{k}} R_{1}\left(I_{\mathbb{X}(s, t)}\right)_{s-1}=\operatorname{dim}_{\mathbb{k}}\left(I_{\mathbb{X}(s, t)}\right)_{s}=3 \ell .
\end{aligned}
$$

I.e., $I_{\mathbb{X}(s, t)}$ has no generators in degree s. Hence by Proposition 3.1, $\nu\left(I_{\mathbb{X}(s, t)}\right)=$ $\nu_{s-1}\left(I_{\mathbb{X}^{(s, t)}}\right)=\ell$ and $\left.\Delta\left(I_{\mathbb{X}^{(s, t)}}\right)\right)=\{\underbrace{s-1, \ldots, s-1}_{\ell \text {-times }}\}$.

Now suppose $2 \cdot\binom{t}{2}+1<s$ and $L_{s}:=x_{0}$. Let $\ell:=s-\binom{t}{2}$. Recall that $I_{\mathbb{X}(s, t)}$ has ℓ-generators G_{1}, \ldots, G_{ℓ} in degree $(s-1)$. Note that, by induction
on s,

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{k}}\left(I_{\mathbb{X}^{(s-1, t)}}\right)_{s-1} & =\operatorname{dim}_{\mathbb{k}} R_{1}\left(I_{\mathbb{X}^{(s-1, t)}}\right)_{s-2} \\
& =\binom{(s-1)+2}{2}-\operatorname{deg}\left(\mathbb{X}^{(s-1, t)}\right) \\
& =\binom{(s-1)+2}{2}-\left[\binom{s-1}{2}+\binom{t}{2}\right] \\
& =2 s-1-\binom{t}{2}:=\alpha
\end{aligned}
$$

and let $\left(I_{\mathbb{X}^{(s-1, t)}}\right)_{s-1}=\left\langle F_{1}, \ldots, F_{\alpha}\right\rangle$. Since

$$
x_{0}\left(I_{\mathbb{X}^{(s-1, t)}}\right)_{s-1}=x_{0} R_{1}\left(I_{\mathbb{X}(s-1, t)}\right)_{s-2}=R_{1} x_{0}\left(I_{\mathbb{X}(s-1, t)}\right)_{s-2} \subseteq R_{1}\left(I_{\mathbb{X}^{(s, t)}}\right)_{s-1},
$$

one can see that

$$
2 s-1-\binom{t}{2} \leq \operatorname{dim}_{\mathbb{k}} R_{1}\left(I_{\mathbb{X}(s, t)}\right)_{s-1} .
$$

Notice that

$$
\operatorname{dim}_{\mathbb{k}} R_{1}\left(I_{\mathbb{X}(s, t)}\right)_{s-1} \leq \operatorname{dim}_{\mathbb{k}}\left(I_{\mathbb{X}(s, t)}\right)_{s}=\binom{s+2}{2}-\mathbf{H}_{\mathbb{X}(s, t)}=2 s+1-\binom{t}{2}
$$

Since $\left(I_{X(s-1, t)}\right)_{s-2}=\left\langle K_{1}, \ldots, K_{\ell-1}\right\rangle$ for some $K_{i} \in R_{s-2}$ and $\left\langle x_{0} K_{1}, \ldots\right.$, $\left.x_{0} K_{\ell-1}\right\rangle \subseteq\left(I_{\mathbb{X}^{(s, t)}}\right)_{s-1}$, we may assume that $x_{0} \mid G_{i}$ for $1 \leq i \leq \ell-1$ and $x_{0} \nmid G_{\ell}$. Moreover, since

$$
\begin{aligned}
& \left.G_{\ell} \in\left(I_{\mathbb{X}^{(s, t)}}\right)_{s-1} \subseteq I_{\mathbb{X}^{(s-1, t)}}\right)_{s-1}=\left\langle F_{1}, \ldots, F_{\alpha}\right\rangle, \quad \text { and } \\
& \alpha-(s-1)=s-\binom{t}{2}>0
\end{aligned}
$$

by the same argument as above, one can show that

$$
\begin{aligned}
R_{1}\left(I_{\mathbb{X}(s, t)}\right)_{s-1} & =\left\langle x_{0} F_{1}, \ldots, x_{0} F_{\alpha}, x_{1} G_{\ell}, x_{2} G_{\ell}\right\rangle=\left(I_{\mathbb{X}(s, t)}\right)_{s}, \quad \text { and so } \\
\operatorname{dim}_{\mathbb{k}}\left[I_{\mathbb{X}(s, t)}\right]_{s} & =\operatorname{dim}_{\mathbb{k}} R_{1}\left(I_{\mathbb{X}(s, t)}\right)_{s-1}=\alpha+2=2 s+1-\binom{t}{2},
\end{aligned}
$$

i.e., $I_{\mathbb{X}(s, t)}$ does not have any generators of degree s. Hence, by Proposition 3.1, $\nu\left(I_{\mathbb{X}(s, t)}\right)=\nu_{s-1}\left(I_{\mathbb{X}(s, t)}\right)=\ell$ and $\Delta\left(I_{\mathbb{X}(s, t)}\right)=\{\underbrace{s-1, \ldots, s-1}_{\ell \text { times }}\}$, as we wished.

Therefore, by Hilbert-Burch theorem, we obtain the minimal graded free resolution of $R / I_{\mathbb{X}(s, t)}$ as above. This completes the proof.

The following corollary is immediate from Theorem 3.5 with $t=3$.
Corollary 3.6. Let $\mathbb{X}^{(s, 3)}$ be the union of two linear star-configurations in \mathbb{P}^{2} of type $s \times 3$ for $s=3+\ell$ with $0 \leq \ell$. Then the minimal graded free resolution of $R / I_{\mathbb{X}^{(s, 3)}}$ is

$$
0 \rightarrow R^{3}(-(s+1)) \rightarrow R^{\ell}(-(s-1)) \bigoplus R^{s-2 \ell+1}(-s) \rightarrow R \rightarrow R / I_{\mathbb{X}(s, t)} \rightarrow 0
$$

for $0 \leq \ell \leq 3$,

$$
0 \rightarrow R^{\ell-4}(-s) \bigoplus R^{3}(-(s+1)) \rightarrow R^{\ell}(-(s-1)) \rightarrow R \rightarrow R / I_{\mathbb{X}(s, t)} \rightarrow 0
$$

for $3<\ell$.
Example 3.7 (CoCoA). Using results from CoCoA calculations, one can obtain the minimal graded resolution of $R / I_{\mathbb{X}(s, 4)}$ for $s=4,5$ as follows:

$$
\begin{aligned}
& 0 \rightarrow R(-6)^{2} \rightarrow R(-4)^{3} \rightarrow R \rightarrow R / I_{\mathbb{X}(4,4)} \rightarrow 0, \quad \text { and } \\
& 0 \rightarrow R(-6)^{3} \bigoplus R(-7) \rightarrow R(-5)^{5} \rightarrow R \rightarrow R / I_{\mathbb{X}(5,4)} \rightarrow 0,
\end{aligned}
$$

respectively. Hence with Theorem 3.5, we obtain the following corollary as well.

Corollary 3.8. Let $\mathbb{X}^{(s, 4)}$ be the union of two linear star-configurations in \mathbb{P}^{2} of type $s \times 4$ for $s=4,5$, and $s=6+\ell$ with $0 \leq \ell$. Then the minimal graded free resolution of $R / I_{\mathbb{X}^{(s, 4)}}$ is

$$
\begin{aligned}
& 0 \rightarrow R(-6)^{2} \rightarrow R(-4)^{3} \rightarrow R \rightarrow R / I_{\mathbb{X}(4,4)} \rightarrow 0, \\
& 0 \rightarrow R(-6)^{3} \oplus R(-7) \rightarrow R(-5)^{5} \rightarrow R \rightarrow R / I_{\mathbb{X}(5,4)} \rightarrow 0, \\
& 0 \rightarrow R^{6}(-(s+1)) \rightarrow\left[\begin{array}{c}
R^{\ell}(-(s-1)) \\
R^{s-2 \ell+1}(-s)
\end{array}\right] \rightarrow R \rightarrow R / I_{\mathbb{X}(s, 4)} \rightarrow 0 \quad \text { for } 0 \leq \ell \leq 6, \\
& 0 \rightarrow\left[\begin{array}{c}
R^{\ell-7}(-s) \\
R^{6}(-(s+1))
\end{array}\right] \rightarrow R^{\ell}(-(s-1)) \rightarrow R \rightarrow R / I_{\mathbb{X}(s, t)} \rightarrow 0 \quad \text { for } 6<\ell .
\end{aligned}
$$

These results then prompt the following natural question:
Question 3.9. What is the minimal graded free resolution of $R / I_{\mathbb{X}(s, t)}$ for $5 \leq t \leq s<\binom{t}{2}$?

References

[1] J. Ahn and Y. S. Shin, The union of linear star-configurations in \mathbb{P}^{2} and the weakLefschetz property, In Preparation.
[2] _, The minimal free resolution of a star-configuration in \mathbb{P}^{n} and the weakLefschetz property, J. Korean Math. Soc. 49 (2012), no. 2, 405-417.
[3] M. V. Catalisano, A. V. Geramita, A. Gimigliano, B. Habourne, J. Migliore, U. Nagel, and Y. S. Shin, Secant varieties to the varieties of reducible hypersurfaces in \mathbb{P}^{n}, J. Alg. Geo. submitted.
[4] A. V. Geramita, B. Harbourne, and J. C. Migliore, Star configurations in \mathbb{P}^{n}, J. Algebra 376 (2013), 279-299.
[5] A. V. Geramita and P. Marocia, The ideal of forms vanishing at a finite set of points in \mathbb{P}^{n}, J. Algebra 90 (1984), no. 2, 528-555.
[6] A. V. Geramita, J. C. Migliore, and S. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in \mathbb{P}^{2}, J. Algebra 298 (2006), no. 2, 563-611.
[7] A. Geramita and F. Orecchia, Minimally generating ideals defining certain tangent cones, J. Algebra 78 (1982), no. 1, 36-57.
[8] Y. R. Kim and Y. S. Shin, Star-configurations in \mathbb{P}^{n} and the weak-Lefschetz property, Comm. Alg. to appear.
[9] J. P. Park and Y. S. Shin, The minimal free graded resolution of a star-configuration in \mathbb{P}^{n}, J. Pure Appl. Algebra. 219 (2015), no. 6, 2124-2133.
[10] Y. S. Shin, Secants to the variety of completely reducible forms and the union of starconfigurations, J. Algebra Appl. 11 (2012), no. 6, 1250109, 27 pp.
[11] \qquad , Star-configurations in \mathbb{P}^{2} having generic Hilbert functions and the weakLefschetz property, Comm. Algebra 40 (2012), no. 6, 2226-2242.

Yong-Su Shin
Department of Mathematics
Sungshin Women's University
SEOUL 136-742, Korea
E-mail address: ysshin@sungshin.ac.kr

