DOI QR코드

DOI QR Code

Growth Inhibition and Induction of Apoptosis in Human Bladder Cancer Cells Induced by Fermented Citrus Kombucha

감귤 콤부차 발효액의 인체 방광암세포에 대한 성장억제와 Apoptosis에 미치는 영향

  • Kim, Chung-I (Department of Food Science & Nutrition, Jeju National University) ;
  • Shin, Seung-Shick (Department of Food Science & Nutrition, Jeju National University) ;
  • Park, Sung-Soo (Department of Food Science & Nutrition, Jeju National University)
  • 김청이 (제주대학교 식품영양학과) ;
  • 신승식 (제주대학교 식품영양학과) ;
  • 박성수 (제주대학교 식품영양학과)
  • Received : 2016.06.23
  • Accepted : 2016.07.28
  • Published : 2016.10.31

Abstract

Kombucha is a slightly sour beverage fermented by symbiotic micro-organisms, including bacteria and yeasts. In this study, we examined the biological activities of citrus Kombucha (CK) produced by addition of citrus extract to original Kombucha (K). After fermentation for 10 days, radical scavenging activity examined by ABTS and DPPH assays increased by approximately 20% compared to that of K. Moreover, content of total phenolic compounds significantly increased by 60% compared to that of K. Cell proliferation assays utilizing MTT showed that CK treatment significantly inhibited growth of bladder cancer cells, T-24 and 5637, in a dose-dependent manner with $IC_{50}$ values of 4 and 7 mg/mL, respectively. Annexin V staining showed that CK treatment led to apoptosis of cells in a dose-dependent manner. T-24 cells were more sensitive to CK treatment than 5637 cells, as 8 mg/mL of CK resulted in 97% apoptosis of T-24 cells. Western blotting showed that CK treatment led to up-regulation of apoptotic proteins, including caspases-3, -8, -9, and PARP, in bladder cells not in K-treated cells. Taken together, these results demonstrate that CK may be developed as a functional beverage.

본 연구에서는 홍차버섯이라고 알려진 콤부차(Kombucha, K)에 플라보노이드 성분 및 각종 기능성 물질이 풍부한 감귤액을 첨가하여 감귤의 생리활성 물질들이 콤부차로 이행되는 효과를 기대하여 감귤 콤부차(citrus Kombucha, CK)를 배양한 후 항산화 능력 및 인체 방광암세포(T-24와 5637)를 이용한 항암 효과를 확인하고 더 나아가 암의 증식을 억제시킬 수 있는 천연소재 탐색을 목적으로 연구를 진행하였다. 항산화 및 총페놀 함량 결과는 K보다 CK의 항산화 능력과 페놀 함량이 높게 확인되었으며 방광암세포 T-24와 5637에 K 혹은 CK를 24시간 처리한 후 MTT assay를 통해 세포독성을 확인한 결과 농도 의존적으로 생존율이 감소하였다. 특히 T-24 세포에서는 CK를 처리하였을 때 현저한 세포의 형태적 변화를 확인하였다. Western immunoblot을 통해 apoptosis 관련 단백질들의 발현을 확인하였는데 T-24에 CK 처리하였을 때 Bcl-2의 발현은 크게 감소하였으며, pro-caspase-9, pro-caspase-8, pro-caspase-3는 농도가 높아질수록 감소하였으며, cleaved caspase-9, cleaved caspase-8, cleaved caspase-3는 농도가 높아질수록 증가하는 경향을 보였다. 또한, cleaved PARP가 증가함을 확인할 수 있었다. 이상의 결과에서 일반 콤부차보다 감귤액을 첨가한 감귤 콤부차가 인체 방광암세포 T-24에 caspase에 의한 apoptosis가 유도됐음을 확인할 수 있었다.

Keywords

References

  1. Cancer Statistics 2013. National Cancer Information Center. http://www.cancer.go.kr/mbs/cancer/subview.jsp?id=cancer_010101020000 (accessed Jun 2015).
  2. Nargund VH, Tanabalan CK, Kabir MN. 2012. Management of non-muscle-invasive (superficial) bladder cancer. Semin Oncol 39: 559-572. https://doi.org/10.1053/j.seminoncol.2012.08.001
  3. Frankfurt OS, Krishan A. 2003. Apoptosis-based drug screening and detection of selective toxicity to cancer cells. Anticancer Drugs 14: 555-561. https://doi.org/10.1097/00001813-200308000-00008
  4. Banerjee M, Singh P, Panda D. 2010. Curcumin suppresses the dynamic instability of microtubules, activates the mitotic checkpoint and induces apoptosis in MCF-7 cells. FEBS J 277: 3437-3448. https://doi.org/10.1111/j.1742-4658.2010.07750.x
  5. Dupuy J, Larrieu G, Sutra JF, Lespine A, Alvinerie M. 2003. Enhancement of moxidectin bioavailability in lamb by a natural flavonoid: quercetin. Vet Parasitol 112: 337-347. https://doi.org/10.1016/S0304-4017(03)00008-6
  6. Hwang YJ, Nam HK, Chang MJ, Noh GW, Kim SH. 2003. Effect of Lentinus edodes and Pleurotus eryngii extracts on proliferation and apoptosis in human colon cancer cell lines. J Korean Soc Food Sci Nutr 32: 217-222. https://doi.org/10.3746/jkfn.2003.32.2.217
  7. Cvetnic Z, Vladimir-Knezevic S. 2004. Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharm 54: 243-250.
  8. Lee SJ, Moon SH, Kim T, Kim JY, Seo JS, Kim DS, Kim J, Kim YJ, Park YI. 2003. Anticancer and antioxidant activities of Coriolus versicolor culture extracts cultivated in the citrus extracts. Kor J Microbiol Biotechnol 31: 362-367.
  9. Guthrie N, Kurowska EM, Carrol KK. 1999. Use of citrus limonoids and flavonoids as well as tocotrienols for the treatment of cancer. PCT Patent WO1999015167 A2.
  10. Reiss J. 1994. Influence of different sugars on the metabolism of the tea fungus. Z Lebensm-Unters Forsch 198: 258-261. https://doi.org/10.1007/BF01192606
  11. Monforte MT, Trovato A, Kirjavainen S, Forestieri AM, Galati EM, Lo Curto RB. 1995. Biological effects of hesperidin, a Citrus flavonoid. (note II): hypolipidemic activity on experimental hypercholesterolemia in rat. Farmaco 50: 595-599.
  12. Okwu DE, Awurum AN, Okoronkwo JI. 2007. Phytochemical composition and in vitro antifungal activity screening of extracts from citrus plants against Fusarium oxysporum of okra plant (Hibiscus esculentus). Proceeding of 8th African Crop Science Society Conference. El-Minia, Egypt. p 1755-1758.
  13. Steinkraus KH, Shapiro KB, Hotchkiss JH, Mortlock RP. 1996. Investigations into the antibiotic activity of tea fungus/ kombucha beverage. Acta Biotechnol 16: 199-205. https://doi.org/10.1002/abio.370160219
  14. Srinivasan R, Smolinske S, Greenbaum D. 1997. Probable gastrointestinal toxicity of Kombucha tea. J Gen Intern Med 12: 643-644. https://doi.org/10.1046/j.1525-1497.1997.07127.x
  15. Eric C, Jessica C. 2013. Kombucha: the amazing probiotic tea that cleans, heals, energizes, and detoxifies. 1st ed. Avery Publisher, New York, NY, USA. p 15-22.
  16. Hesseltine CW. 1983. The future of fermented foods. Nutr Rev 41: 293-301.
  17. Koo MWL, Cho CH. 2004. Pharmacological effects of green tea on the gastrointestinal system. Eur J Pharmacol 500: 177-185. https://doi.org/10.1016/j.ejphar.2004.07.023
  18. Hase T, Komine Y, Meguro S, Takeda Y, Takahashi H, Matsui Y, Inaoka S, Katsuragi Y, Tokimitsu I, Shimasaki H, Itakura H. 2001. Anti-obesity effects of tea catechins in humans. J Oleo Sci 50: 599-605. https://doi.org/10.5650/jos.50.599
  19. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  20. Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers AE, Rietjens IM. 2001. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic Biol Med 31: 869-881. https://doi.org/10.1016/S0891-5849(01)00638-4
  21. Lee GD, Chang HG, Kim HK. 1997. Antioxidative and nitrite- scavenging activities of edible mushrooms. Korean J Food Sci Technol 29: 432-436.
  22. Jayabalan R, Subathradevi P, Marimuthu S, Sathishkumar M, Swaminathan K. 2008. Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chem 109: 227-234. https://doi.org/10.1016/j.foodchem.2007.12.037
  23. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243.
  24. Park Y, Kim SH, Choi S, Han JK, Jung HK. 2008. Changes of antioxidant capacity, total phenolics, and vitamin C contents during Rubus coreanus fruit ripening. Food Sci Biotechnol 17: 251-256.
  25. Halin C, Mora JR, Sumen C, von Andrian UH. 2005. In vivo imaging of lymphocyte trafficking. Annu Rev Cell Dev Biol 21: 581-603. https://doi.org/10.1146/annurev.cellbio.21.122303.133159
  26. Rorth P. 2009. Collective cell migration. Annu Rev Cell Dev Biol 25: 407-429. https://doi.org/10.1146/annurev.cellbio.042308.113231

Cited by

  1. Fermentation for tailoring the technological and health related functionality of food products vol.60, pp.17, 2016, https://doi.org/10.1080/10408398.2019.1666250