Acknowledgement
Grant : BK21플러스
Supported by : 서울시립대학교
References
- ACI Committee 408, (2003), Bond and Development of Straight Reinforcing Bars in Tension(ACI 408R-03), American Concrete Institute, Farmington Hills, Mich., 49.
- Ahn, Y. K., & Kim, S. C. (2002). Integrity Assessment Models for Bridge Structures Using Fuzzy Decision-Making, Journal of Korea Concrete Institute, 14(6), 1022-1031. https://doi.org/10.4334/JKCI.2002.14.6.1022
- Anoop, M.B., Rao, K.B., & Rao, T.V. (2004). Application of fuzzy sets for estimating service life of reinforced concrete structural members in corrosive environments, Engineering Structures, 24(9), 1229-1242. https://doi.org/10.1016/S0141-0296(02)00060-3
- Anoop, M.B., & Rao, K.B. (2007). Application of fuzzy sets for remaining life assessment of corrosion affected reinforced concrete bridge girders, Journal of Performance of Construtcted Facilities, 21(2), 166-171. https://doi.org/10.1061/(ASCE)0887-3828(2007)21:2(166)
- Cho, H. C., Lee, D. H., Hwang. J. H., Ju, H., Kim, K. S., & Seo, S. Y. (2013). Evaluation Model for Shear Behavior of Reinforced Concrete Panels Based on Neuro-Fuzzy System, Journal of the regional association of Architectural Institute of Korea, 15(1), 67-73.
- Cho, H. C., Lee, D. H., Hwang. J. H., Ju, H., Kim, K. S., & Seo, S. Y. (2013). Shear Strength Evaluation of Steel Fiber-Reinforced Concrete Flexural Members Using ANFIS, Journal of the Architectural Institute of Korea, 29(6), 3-11.
- Choi, K. K., Mahmoud, M. R. T., & Alaa G. S. (2007). Simplified Punching Shear Design Method for Slab-Column Connections Using Fuzzy Learning., ACI Structural Journal, 104(4), 438-447.
- Demir, F. (2005). A new way of prediction elastic modulus of normal and high strength concrete-fuzzy logic, Cement and Concrete Research., 35(8), 1531-1538. https://doi.org/10.1016/j.cemconres.2005.01.001
- Do, J. Y., Song, H., & Soh, Y., S. (2005). Fuzzy Inference Based Design for Durability of Reinforced Concrete Structural in Chloride-Induced Corrosion Environment, Journal of Korea Concrete Institute, 17(1), 157-166. https://doi.org/10.4334/JKCI.2005.17.1.157
- Esfahani, M. R., & Rangan, B. V. (1998). Local Bond Strength of Reinforcing Bars in Normal Strength and High-Strength Concrete (HSC), ACI Structural Journal, 95(2), 96-106.
- Esfahani, M. R., & Rangan, B. V. (1998). Bond between Normal Strength and High-Strength Concrete (HSC) and Reinforcing Bars in Splices in Beams, ACI Structural Journal, 95(3), 272-280.
- Grabisch, M., Murofushi, T., & Sugeno, M. (2007). Fuzzy Measures and Integral, Physica-Verlag, 476.
- Hamad, B. S. (1995). Bond Strength Improvement of Reinforcing Bars with Specially Designed Rib Geometries, ACI Structural Journal, 92(1), 3-13.
- Haykin, S. (2009). Neural Networks and Learing Machines 3rd ed, Pearson Education, 934.
- Hester, C. J., Salamizavaregh, S., Darwin, D., & McCabe, S. (1993). Bond of Epoxy-Coated Reinforcement: Splices, ACI Structural Journal, 90(1), 89-102.
- Jang, I. Y. (1993). An Experimental Study on the Bond Split Mechanism of High Strength Concrete, Journal of Korea Concrete Institute, 11(4), 129-136. https://doi.org/10.22636/JKCI.1999.11.4.129
- Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing, Prentice Hall, 614.
- Jung, S. M., & Kim, K. S. (2008). Knowledge-based Prediction of Shear Strength of Concrete Beams without Shear Reinforcement, Engineering Structures, 30(6), 1515-1525. https://doi.org/10.1016/j.engstruct.2007.10.008
- Ka, S. B. (2015). Bond Strength Model of Reinforcing Bars Considering Failure Mechanism, Ms. Dissertation, University of Seoul, Seoul, Korea.
- Kim, I. S., Lee, J. H., Yang, D. S., & Park, S. K. (2002). Prediction on Mix Proportion Factor and Strength of Concrete Using Neural Network, Journal of Korea Concrete Institute, 14(4), 458-459.
- Kim, Y. M., Kim, C. K., & Hong, S. G. (2006). Fuzzy Based State Assessment for Reinforced Concrete Building Structures, Engineering Structures, 28(9), 1286-1297. https://doi.org/10.1016/j.engstruct.2005.12.011
- Lee, H., S., & Kwon, S., J. (2012). Analysis Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm, Journal of Korea Concrete Institute, 24(4), 481-490. https://doi.org/10.4334/JKCI.2012.24.4.481
- Lee, K. C. (2007). Fuzzy Theory, Kyungmoon, 207.
- MacQueen, J. B. (2009). Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California press, 281-297.
- Moon, K. Y., & Lee, H. Y. (2003). Intelligence information system using MATLAB, A-JIN, 612.
- Oh, J. W., Lee, J. H., & Lee, I. W. (1997). Use of Neural Networks on Concrete Mix Design, Journal of Korea Concrete Institute, 9(2), 145-151.
- Orangun, C. O., Jirsa, J. O., & Breen, J. E. (1975). The Strength of Anchored Bars: A Reevaluation of Test Data on Development Length and Splices, Center for Highway Research, University of Texas at Austin, 78.
- Orangun, C. O., Jirsa, J. O., & Breen, J. E. (1977). A Reevaluation of Test Data on Development Length and Splices, ACI Journal, Proceedings, 74(3), 114-122.
- Osman, U., Fuat, D., & Tayfun, U. (2007). Fuzzy Logic Approach to Predict Stress-Strain Curves of Steel Fiber-Reinforced Concretes in Compression, Building and Environment, 42(10), 3589-3595. https://doi.org/10.1016/j.buildenv.2006.10.023
- Park, T. W., Na, U. J., & Kwon, S. (2010). Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System, Journal of Korea Concrete Institute, 22(1), 19-27. https://doi.org/10.4334/JKCI.2010.22.1.019
- Pop, I., Schutter, G. D., Desnerck, P., & Onet, T. (1977). Reevaluation of Test Data on Development Length and Splices, ACI Journal Proceedings, 74(3), 114-122.
- Song, J. H., Knag, W. H., Kim, K. S., & Jung, S. M. (2010). Probabilistic Shear Strength Model for Reinforced Concrete Beams without Shear Reinforcement, Structural Engineering and Mechanics, 34(1), 15-38. https://doi.org/10.12989/sem.2010.34.1.015
- Tepfers, R. (1973). A Theory of Bond Applied to Overlapping Tensile Reinforcement Splices for Deformed Bars, Publication 73:2, Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden, , 328.
- Torre-Casanova, A., Jason, L., Davenne, L., & Pinelli, X. (2013). Confinement effects on the steel-concrete bond strength and pull-out failure, Engineering Fracture Mechanics, 97, 92-104. https://doi.org/10.1016/j.engfracmech.2012.10.013
- Yerlici, V. A., & Ozturan, T. (2000). Factors Affecting Anchorage Bond Strength in High-Performance Concrete, ACI Structural Journal, 97(3), 499-507.
- Zuo, J., & Darwin, D. (1998). Bond Strength of High Relative Rib Area Reinforcing Bars, SM Report No. 46, University of Kansas Center for Research, 350.
- Zuo, J., & Darwin, D. (2000). Splice Strength of Conventional and High Relative Rib Area Bars in Normal and High-Strength Concrete, ACI Structural Journal, 97(4), 630-641.