DOI QR코드

DOI QR Code

Estimation of Bond Strength of Reinforcing Bars in Reinforced Concrete Members Using ANFIS

ANFIS를 이용한 철근콘크리트 부재 보강철근의 부착강도 평가

  • Received : 2016.07.20
  • Accepted : 2016.09.20
  • Published : 2016.09.30

Abstract

In reinforced concrete members, bond strength of reinforcing bars shall be ensured to resist external forces. The lack of bond strength may lead to failures of the structural members, and thus, an accurate calculation of the bond strength is essential. However, due to its complex mechanism and many influential factors, most bond strength models were empirically formed based on experimental results, and they often do not provide accurate estimation. In this study, therefore, Adaptive Neuro-Fuzzy Inference System (ANFIS) was applied to estimate the bond strength accurately for reinforced concrete members. A total of 439 test data was collected for training and validation of the ANFIS model, and the trained ANFIS model estimated the bond strength very accurately and reflected the effects of key variables without bias.

Keywords

Acknowledgement

Grant : BK21플러스

Supported by : 서울시립대학교

References

  1. ACI Committee 408, (2003), Bond and Development of Straight Reinforcing Bars in Tension(ACI 408R-03), American Concrete Institute, Farmington Hills, Mich., 49.
  2. Ahn, Y. K., & Kim, S. C. (2002). Integrity Assessment Models for Bridge Structures Using Fuzzy Decision-Making, Journal of Korea Concrete Institute, 14(6), 1022-1031. https://doi.org/10.4334/JKCI.2002.14.6.1022
  3. Anoop, M.B., Rao, K.B., & Rao, T.V. (2004). Application of fuzzy sets for estimating service life of reinforced concrete structural members in corrosive environments, Engineering Structures, 24(9), 1229-1242. https://doi.org/10.1016/S0141-0296(02)00060-3
  4. Anoop, M.B., & Rao, K.B. (2007). Application of fuzzy sets for remaining life assessment of corrosion affected reinforced concrete bridge girders, Journal of Performance of Construtcted Facilities, 21(2), 166-171. https://doi.org/10.1061/(ASCE)0887-3828(2007)21:2(166)
  5. Cho, H. C., Lee, D. H., Hwang. J. H., Ju, H., Kim, K. S., & Seo, S. Y. (2013). Evaluation Model for Shear Behavior of Reinforced Concrete Panels Based on Neuro-Fuzzy System, Journal of the regional association of Architectural Institute of Korea, 15(1), 67-73.
  6. Cho, H. C., Lee, D. H., Hwang. J. H., Ju, H., Kim, K. S., & Seo, S. Y. (2013). Shear Strength Evaluation of Steel Fiber-Reinforced Concrete Flexural Members Using ANFIS, Journal of the Architectural Institute of Korea, 29(6), 3-11.
  7. Choi, K. K., Mahmoud, M. R. T., & Alaa G. S. (2007). Simplified Punching Shear Design Method for Slab-Column Connections Using Fuzzy Learning., ACI Structural Journal, 104(4), 438-447.
  8. Demir, F. (2005). A new way of prediction elastic modulus of normal and high strength concrete-fuzzy logic, Cement and Concrete Research., 35(8), 1531-1538. https://doi.org/10.1016/j.cemconres.2005.01.001
  9. Do, J. Y., Song, H., & Soh, Y., S. (2005). Fuzzy Inference Based Design for Durability of Reinforced Concrete Structural in Chloride-Induced Corrosion Environment, Journal of Korea Concrete Institute, 17(1), 157-166. https://doi.org/10.4334/JKCI.2005.17.1.157
  10. Esfahani, M. R., & Rangan, B. V. (1998). Local Bond Strength of Reinforcing Bars in Normal Strength and High-Strength Concrete (HSC), ACI Structural Journal, 95(2), 96-106.
  11. Esfahani, M. R., & Rangan, B. V. (1998). Bond between Normal Strength and High-Strength Concrete (HSC) and Reinforcing Bars in Splices in Beams, ACI Structural Journal, 95(3), 272-280.
  12. Grabisch, M., Murofushi, T., & Sugeno, M. (2007). Fuzzy Measures and Integral, Physica-Verlag, 476.
  13. Hamad, B. S. (1995). Bond Strength Improvement of Reinforcing Bars with Specially Designed Rib Geometries, ACI Structural Journal, 92(1), 3-13.
  14. Haykin, S. (2009). Neural Networks and Learing Machines 3rd ed, Pearson Education, 934.
  15. Hester, C. J., Salamizavaregh, S., Darwin, D., & McCabe, S. (1993). Bond of Epoxy-Coated Reinforcement: Splices, ACI Structural Journal, 90(1), 89-102.
  16. Jang, I. Y. (1993). An Experimental Study on the Bond Split Mechanism of High Strength Concrete, Journal of Korea Concrete Institute, 11(4), 129-136. https://doi.org/10.22636/JKCI.1999.11.4.129
  17. Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing, Prentice Hall, 614.
  18. Jung, S. M., & Kim, K. S. (2008). Knowledge-based Prediction of Shear Strength of Concrete Beams without Shear Reinforcement, Engineering Structures, 30(6), 1515-1525. https://doi.org/10.1016/j.engstruct.2007.10.008
  19. Ka, S. B. (2015). Bond Strength Model of Reinforcing Bars Considering Failure Mechanism, Ms. Dissertation, University of Seoul, Seoul, Korea.
  20. Kim, I. S., Lee, J. H., Yang, D. S., & Park, S. K. (2002). Prediction on Mix Proportion Factor and Strength of Concrete Using Neural Network, Journal of Korea Concrete Institute, 14(4), 458-459.
  21. Kim, Y. M., Kim, C. K., & Hong, S. G. (2006). Fuzzy Based State Assessment for Reinforced Concrete Building Structures, Engineering Structures, 28(9), 1286-1297. https://doi.org/10.1016/j.engstruct.2005.12.011
  22. Lee, H., S., & Kwon, S., J. (2012). Analysis Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm, Journal of Korea Concrete Institute, 24(4), 481-490. https://doi.org/10.4334/JKCI.2012.24.4.481
  23. Lee, K. C. (2007). Fuzzy Theory, Kyungmoon, 207.
  24. MacQueen, J. B. (2009). Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California press, 281-297.
  25. Moon, K. Y., & Lee, H. Y. (2003). Intelligence information system using MATLAB, A-JIN, 612.
  26. Oh, J. W., Lee, J. H., & Lee, I. W. (1997). Use of Neural Networks on Concrete Mix Design, Journal of Korea Concrete Institute, 9(2), 145-151.
  27. Orangun, C. O., Jirsa, J. O., & Breen, J. E. (1975). The Strength of Anchored Bars: A Reevaluation of Test Data on Development Length and Splices, Center for Highway Research, University of Texas at Austin, 78.
  28. Orangun, C. O., Jirsa, J. O., & Breen, J. E. (1977). A Reevaluation of Test Data on Development Length and Splices, ACI Journal, Proceedings, 74(3), 114-122.
  29. Osman, U., Fuat, D., & Tayfun, U. (2007). Fuzzy Logic Approach to Predict Stress-Strain Curves of Steel Fiber-Reinforced Concretes in Compression, Building and Environment, 42(10), 3589-3595. https://doi.org/10.1016/j.buildenv.2006.10.023
  30. Park, T. W., Na, U. J., & Kwon, S. (2010). Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System, Journal of Korea Concrete Institute, 22(1), 19-27. https://doi.org/10.4334/JKCI.2010.22.1.019
  31. Pop, I., Schutter, G. D., Desnerck, P., & Onet, T. (1977). Reevaluation of Test Data on Development Length and Splices, ACI Journal Proceedings, 74(3), 114-122.
  32. Song, J. H., Knag, W. H., Kim, K. S., & Jung, S. M. (2010). Probabilistic Shear Strength Model for Reinforced Concrete Beams without Shear Reinforcement, Structural Engineering and Mechanics, 34(1), 15-38. https://doi.org/10.12989/sem.2010.34.1.015
  33. Tepfers, R. (1973). A Theory of Bond Applied to Overlapping Tensile Reinforcement Splices for Deformed Bars, Publication 73:2, Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden, , 328.
  34. Torre-Casanova, A., Jason, L., Davenne, L., & Pinelli, X. (2013). Confinement effects on the steel-concrete bond strength and pull-out failure, Engineering Fracture Mechanics, 97, 92-104. https://doi.org/10.1016/j.engfracmech.2012.10.013
  35. Yerlici, V. A., & Ozturan, T. (2000). Factors Affecting Anchorage Bond Strength in High-Performance Concrete, ACI Structural Journal, 97(3), 499-507.
  36. Zuo, J., & Darwin, D. (1998). Bond Strength of High Relative Rib Area Reinforcing Bars, SM Report No. 46, University of Kansas Center for Research, 350.
  37. Zuo, J., & Darwin, D. (2000). Splice Strength of Conventional and High Relative Rib Area Bars in Normal and High-Strength Concrete, ACI Structural Journal, 97(4), 630-641.