DOI QR코드

DOI QR Code

인지라디오망의 스펙트럼홀 예측기반 적응 호수락제어기법

Adaptive Call Admission Control Based on Spectrum Holes Prediction in Cognitive Radio Networks

  • Lee, Jin-yi (Department of Electronic Engineering, Chungwoon University)
  • 투고 : 2016.08.04
  • 심사 : 2016.10.20
  • 발행 : 2016.10.30

초록

인지라디오망에서 제한된 스펙트럼 자원을 효율적으로 이용하는 방법으로 PU (primary user)가 사용하지 않는 스펙트럼 홀의 크기를 예측하여 SU (secondary user)가 이용하는 방법이 있다. 본 논문은 SU의 서비스품질을 만족시키기 위하여, SU스펙트럼 홉핑호의 손실확률 (SHDP; spectrum hopping call dropped probability)을 최소화는 적응 호수락제어 기법을 제안한다. 이 방법은 호수락제어, 대역폭예측, 적응대역폭할당으로 구성된다. 예측기법은 스펙트럼홀의 크기뿐만 아니라, SU스펙트럼 홉핑호가 요구하는 대역폭크기를 함께 예측하며, 예약할 수 있는 자원의 크기가 부족할 때는 적응대역폭할당을 이용하여 SU스펙트럼 홉핑호의 손실확률을 최소화시킨다. 예측기법은 위너예측기법을 이용한다. 시뮬레이션을 통하여 제안한 방법의 성능을 기존방법과 비교하고, SHDP를 최소화 할 수 있음을 보인다.

There is a scheme where secondary users (SU) use predicted spectrum holes for primary users (PU) not to utilize for efficient utilization of the limited spectrum resources in cognitive radio networks. In this paper, we propose an adaptive call admission control framework that minimizes spectrum hopping call dropped probability (SHDP) for satisfying SU quality of service (QoS). The scheme is based on a call admission control (CAC), bandwidth prediction and adaptive bandwidth assignment. The prediction model predicts not only the number of spectrum holes, but requested bandwidth of SU spectrum hopping call, and then the CAC minimizes SHDP via an adaptive bandwidth assignment in resources not being enough for reservation. We bring Wiener prediction model to predict the resources. Simulations are conducted to compare the performance of proposed scheme with an existing, and show its ability of minimizing the SHDP.

키워드

참고문헌

  1. J. Y. Lee, "A channel allocation scheme based on spectrum hole prediction in cognitive radio wireless networks," The Journal of Korea Navigation Institute, Vol. 19, No, 4, pp. 318-322, Aug. 2015.
  2. X. Zhu, L. Shen, and T. S. P. Yum, "Analysis of cognitive radio spectrum access with optimal channel reservation," IEEE Communications Letters, Vol. 11, No. 4, pp. 304-306, April 2007. https://doi.org/10.1109/LCOM.2007.348282
  3. Y. Zhang, "Dynamic spectrum access in cognitive radio wireless networks," in The International Communications Conference, Beijing: China, pp.4927-4932, May 2008.
  4. J. Y. Lee, "A call admission control using Markovin queueing model for multi-services cognitive radio networks," The Journal of Korea Navigation Institute, Vol. 18, No, 4, pp. 347-352, Aug. 2014.
  5. P. Wang, A. Huang, W. Wang, and T. Q. S. Quek, "Admission control in cognitive radio networks with finite queue and user impatience," IEEE Wireless Communications Letters, Vol. 2, No.2, pp. 175-178, April 2013. https://doi.org/10.1109/WCL.2012.122612.120918
  6. A. Kundu, P. Chowdhury, I. S. Misra, and S. K. Sanyal, "QoS aware integrated call admission and cognitive channel allocation scheme for a macro-femto BWA network," Research Notes in Information Science (RNIS), Vol. 11, pp. 47-59, Jan. 2013. https://doi.org/10.4156/rnis.vol11.issue0.5
  7. M. Khedr and R. N. Makki, "A multi-class on time call admission control for wireless broadband cognitive networks," Research Journal of Applied Sciences, Engineering and Technology, Vol. 5, No. 6, pp. 2098-2106, Feb. 2013.
  8. L. Wang, Q. Peng, and Q. Peng, "Handoff delay-based call admission control in cognitive radio networks," IEICE Transactions on Communications, Vol. E97-B, No.1, pp. 49-55, Jan. 2014. https://doi.org/10.1587/transcom.E97.B.49
  9. B. Li, Y. N. Deng, Y. Yuan, and W.J. Feng, "Research on channel selection algorithms in cognitive radio networks," Journal of Networks, Vol. 10, No. 3, March 2015.
  10. Z. Wen, T. Luo, W. Xiang, S. Majhi, and Y. Ma, "Autoregressive spectrum hole prediction model for cognitive radio systems," in The International Communications Conference, Beijing: China, pp. 154-157, May 2008.