DOI QR코드

DOI QR Code

항공교통관제 시뮬레이션을 위한 개선된 5 자유도 항공기 운동 모델 개발 및 검증방안 연구

Development and Validation of an Improved 5-DOF Aircraft Dynamic Model for Air Traffic Control Simulation

  • 강지수 (인하대학교 항공우주공학과) ;
  • 오혜주 (인하대학교 항공우주공학과) ;
  • 최기영 (인하대학교 항공우주공학과) ;
  • 이학태 (인하대학교 항공우주공학과)
  • Kang, Jisoo (Department of Aerospace Engineering, Inha University) ;
  • Oh, Hyeju (Department of Aerospace Engineering, Inha University) ;
  • Choi, Keeyoung (Department of Aerospace Engineering, Inha University) ;
  • Lee, Hak-Tae (Department of Aerospace Engineering, Inha University)
  • 투고 : 2016.09.01
  • 심사 : 2016.10.17
  • 발행 : 2016.10.30

초록

다양한 교통상황에서 현실적인 항공교통관제 시뮬레이션을 수행하기 위해서는 정확성과 효율성이 고려된 항공기 운동 모델이 필수적이다. 본 연구에서는 BADA의 항공기 운용 및 성능 정보를 반영하여 고 충실도의 개선된 5자유도 운동 모델을 개발하였으며, 항공기의 비행 특성이 반영된 제어기 및 유도부를 구성하였다. 이 때, 질점 모델 기반의 BADA 정보를 5자유도 운동 모델에 적용하기 위해 일부 데이터와 관계식만을 선별적으로 차용하였고, 일부 데이터는 항공기 설계 기법을 이용하여 추정하였다. 시뮬레이션 정확도를 향상시키기 위해 항공기 기종 및 비행 계획을 통해 이륙 중량을 추정하였으며, 이를 시뮬레이션에 반영하였다. 개발된 운동 모델은 실제 기록된 비행 궤적 정보와 비교하여 검증 되었다. 본 연구에서 개발된 운동 모델은 관제시뮬레이터에 적용되어 다양한 항공교통 관련 연구에 활용될 수 있다.

To perform realistic air traffic control (ATC) simulation in various air traffic situations, an aircraft dynamic model that is accurate and efficient is required. In this research, an improved five degree of freedom (5-DOF) dynamic model with feedback control and guidance law is developed, which utilizes selected performance data and operational specifications from the base of aircraft data (BADA) and estimations using aircraft design techniques to improve the simulation fidelity. In addition, takeoff weight is estimated based on the aircraft type and flight plan to improve simulation accuracy. The dynamic model is validated by comparing the simulation results with recorded flight trajectories. An ATC simulation system using this 5-DOF model can be used for various ATC related research.

키워드

참고문헌

  1. K. R. Oh, W. K. Yoon, S. B. Hong, O. S. Ahn, and G. Joo, "Research trend on the UAV regulation and integration of UAV into civil airspace system," Current Industrial and Technological Trends in Aerospace, Vol. 13, No. 2, pp. 72-79, Dec. 2015.
  2. T. Prevot, P. Lee, T. Callantine, J. Mercer, J. Homola, N. Smith, and E. Palmer, "Human-in-the-loop evaluation nextgen concept in the airspace operation laboratory," in Proceeding of the AIAA Modeling and Simulation Technologies Conference, Toronto: Canada, 2010.
  3. J. S. Park, H. J. Oh, and K. Y. Choi, "The research of verify reliability of an aircraft model for the next generation system simulator by using BADA," in Proceeding of the Korean Society for Aeronautical and Space Sciences, Jeju: Korea, pp. 1735-1738, 2014.
  4. J. S. Kang, H. J. Oh, K. Y. Choi, and H. T. Lee, "Improving the accuracy of air traffic simulation using a 5-DOF aircraft dynamic model with BADA," in Proceeding of the Korean Society for Aeronautical and Space Sciences, Goseong: Korea, pp. 438-439, 2016.
  5. H. T. Lee and G. B. Chatterji, "Closed-form takeoff weight estimation model for air transportation simulation," in Proceeding of the 10th AIAA Aviation Technology, Integration, and Operations Conference, FortWorth: TX, 2010.
  6. FAA IPH 8083-16A, Instrument Procedures Handbook, Chapter 4 : Approach, 2015.
  7. Boeing company, 737-600/700/800/900 Flight Crew Training Manual, 2005.
  8. Airline Transport Professionals (ATP), Cessena 172 Training Supplement, 2013.
  9. Electronic Code of Federal Regulaton (e-CFR), Airworthiness standards - Part 33, Aircraft Engine. [Internet]. Available: http://www.ecfr.gov
  10. Eurocontrol Experimental Centre, User Manual for BADA Revision 3.9, 2011
  11. FlightAware, [Internet]. Available: http://www.flightaware.com
  12. FAA AC 25-15, Approval of Flight Management Systems in Transport Category Airplanes, 1989.
  13. ICAO ATMRPP WG/25-WP/601, Proposal for the development of TBO concept, 2014.

피인용 문헌

  1. Human-in-the-Loop Simulation Analysis of Integrated RPAS Operations in Trajectory Based Operations Environment vol.17, pp.4, 2016, https://doi.org/10.5139/IJASS.2016.17.4.604
  2. Safety and Workload Assessment of Lost C2 Link on Seoul–Jeju Route pp.2327-3097, 2019, https://doi.org/10.2514/1.I010670