DOI QR코드

DOI QR Code

화재모델링을 이용한 목표 대상물의 열적 손상에 대한 정량적 위험성 평가방법의 고찰

An Investigation of Quantitative Risk Assessment Methods for the Thermal Failure in Targets using Fire Modeling

  • 양호동 (조선이공대학교 자동차과) ;
  • 한호식 (대전대학교 소방방재학과) ;
  • 황철홍 (대전대학교 소방방재학과) ;
  • 김성찬 (경일대학교 소방방재학과)
  • Yang, Ho-Dong (Department of Automobiles, Chosun College of Science and Technology) ;
  • Han, Ho-Sik (Department of Fire and Disaster Prevention, Daejeon University) ;
  • Hwang, Cheol-Hong (Department of Fire and Disaster Prevention, Daejeon University) ;
  • Kim, Sung-Chan (Department of Fire Safety, Kyungil University)
  • 투고 : 2016.09.09
  • 심사 : 2016.10.10
  • 발행 : 2016.10.31

초록

화재모델링을 이용한 목표 대상물의 열적 손상에 대한 정량적 위험성 평가방법이 검토되었다. 이를 위해 대표적인 화재모델로서 FDS가 사용되었으며, 특정 구획 내에서 화원 면적 변화에 따른 전기 케이블의 열적 손상과 관련된 확률이 평가되었다. 보수적 관점에서 적용되고 있는 '최대 손상임계 초과확률'과 손상시간의 정보가 포함된 '손상확률'이 체계적으로 비교되었다. 목표 대상물이 표면온도 및 열유속에 대한 최소 손상기준에 도달하는 순간에 열적 손상이 발생된다는 가정이 적용된 최대 손상임계 초과확률에 비해 본 연구에서 제안된 손상확률은 정량적 화재 위험성을 보다 현실적으로 평가할 수 있음을 확인하였다.

The quantitative risk assessment methods for thermal failure in targets were studied using fire modeling. To this end, Fire Dynamics Simulator (FDS), as a representative fire model, was used and the probabilities related to thermal damage to an electrical cable were evaluated according to the change in fire area inside a specific compartment. 'The maximum probability of exceeding the damage thresholds' adopted in a conservative point of view and 'the probability of failure' including the time to damage were compared. The probability of failure suggested in the present study could evaluate the quantitative fire risk more realistically, compared to the maximum probability of exceeding the damage thresholds with the assumption that thermal damage occurred the instant the target reached its minimum failure criteria in terms of the surface temperature and heat flux.

키워드

참고문헌

  1. J. H. Cho, C. H. Hwang, J. Kim and S. Lee, "Sensitivity Analysis of FDS Results for the Input Uncertainty of Fire Heat Release Rate", Journal of the Korean Society of Safety, Vol. 31, No. 1, pp. 25-32 (2016). https://doi.org/10.14346/JKOSOS.2016.31.1.025
  2. National Fire Protection Association, "Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating Plant", NFPA 805, 2001 Edition (2003).
  3. NRC and EPRI, "Nuclear Power Plant Fire Modeling Analysis Guidelines", NUREG-1934 and EPRI 1023259, Finial Report (2012).
  4. NRC and EPRI, "Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications", NUREG-1824 and EPRI 1011999, Finial Report (2007).
  5. Korea Institute of Nuclear Safety, "Nuclear Power Plant Fire Modeling Application Guide (Draft)", KINS/RR-856 (2011).
  6. C. H. Hwang, H. S. Han, H. S. Yoon, J. H. Cho and B. J. Kim, "Development of Evaluation Criteria and Demonstration Application for Fire Modeling of Nuclear Power Plant", KINS/HR-1422 (2015).
  7. NRC, "Fire Dynamics Tools (FDTs), Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire Protection Inspection Program", NUREG-1805, Finial Report (2013).
  8. H. S. Han, C. H. Hwang, K. L. Baik and S. Lee, "Application of FDS for the Hazard Analysis of Lubricating Oil Fires in the Air Compressor Room of Domestic Nuclear Power Plant", Journal of the Korean Society of Safety, Vol. 31, No. 2, pp. 1-9 (2016). https://doi.org/10.14346/JKOSOS.2016.31.2.1
  9. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt, "Fire Dynamic Simulator Technical Reference Guide, Volume 3: Validation", NIST SP 1018-3, Sixth Edition, NIST, Gaithersburg, MD (2015).
  10. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk and K. Overholt, "Fire Dynamic Simulator; User's Guide", NIST SP 1019, Sixth Edition, NIST, Gaithersburg, MD (2015).
  11. V. Babrauskas, in SFPE Handbook of Fire Protection Engineering, 2nd ed., NFPA, Quincy, MA (1995).