DOI QR코드

DOI QR Code

중규모 도로터널의 제연경계벽 설치에 따른 연기확산특성

Study of the Characteristics of Smoke Spread by an Installing Smoke Barrier in Medium Length Road Tunnel

  • 투고 : 2016.06.08
  • 심사 : 2016.09.05
  • 발행 : 2016.10.31

초록

중규모 도로터널의 경우 제연설비 설치가 의무화 되어있지 않기 때문에 화재가 발생할 경우 이용객들이 많은 피해를 입을 수 있다. 따라서 본 연구에서는 연장 1,000 m 2차로 일방통행방식의 도로터널을 대상으로 3차원 수치해석, 정량적 위험도 평가를 통해 제연경계벽이 설치되지 않을 때와 설치간격이 100, 150, 200, 250 m일 때 화재에 의하여 발생되는 연기류 등이 시간에 따른 확산을 분석하였다. 그 결과 중규모 도로터널에 제연경계벽을 설치할 경우 설치하지 않은 경우보다 화재로부터 발생되는 고온의 공기와 독성가스의 확산이 지연되는 것을 확인할 수 있었다. 또한 수치해석 대상 중에서 제연경계벽의 설치간격이 100 m인 경우 화재로 인해 발생된 고온의 공기와 독성가스의 확산이 다른 경우보다 많이 지연되어 터널 이용객이 피난하는데 가장 적합한 것으로 나타났다.

In the case of a medium length road tunnel, the installation of a smoke control facility is not mandatory so users can suffer considerable injuries if a fire breaks out. Therefore, this study analyzed the high-temperature air and toxic gas generated by fire proliferating with time when a smoke barrier is not installed and when the installation interval is 100, 150, 200, and 250 m through 3-dimensional numerical analysis, evacuation simulation, and Quantitative Risk Assessment Methodology targeting the medium length road tunnel. As a result, the diffusion of the high-temperature air and toxic gas occurring from the a fire was delayed when the smoke barrier was installed in a medium length road tunnel compared to that when it was not installed. In addition, when the installation interval of a smoke barrier was 100m and the numerical analysis target was 100m, the diffusion of high-temperature air and toxic gas generated by the fire was delayed more than in the other cases, which was most suitable for tunnel users to evacuate.

키워드

참고문헌

  1. Statistics Korea, "2015 Road Bridge and Tunnel Status Report" (2014).
  2. Ministry of Land, Infrastructure and Transport, "Guideline for the Installation of Road Tunnel Fire Safety Facilities", p. 22 (2009).
  3. M. Seike, N. Kawabata and M. Hasegawa, "The Effect of Fixed Smoke Barriers on Evacuation Environment in Road Tunnel Fires with Natural Ventilation", 7th International Conference 'Tunnel Safety and Ventilation', pp. 126-132 (2014).
  4. L. Hu, J. W. Zhou, W. Peng and H. B. Wang, "Confinement of Fire-induced Smoke and Carbon Monoxide Transportation by Air Curtain in Channels", Journal of Hazardous Materials, Vol. 156, Issues 1-3, pp. 327-334 (2008). https://doi.org/10.1016/j.jhazmat.2007.12.041
  5. J. S. Choi, B. I. Choi, M. B. Kim, Y. S. Han, Y. J. Jang, Y. W. Lee, N. S. Hwang and P. Y. Kim, "The Rist Assessment of Tunnel fire Through Real Scale Fire Test", Fire Science and Engineering, Vol. 16, No. 3, pp. 71-76 (2002).
  6. C. M. Rhie and W. L. Chow, "Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation", AIAA J., Vol. 21, pp. 1525-1532 (1983). https://doi.org/10.2514/3.8284
  7. CD-ADAPCO Ltd., "STAR-CCM+ Ver. 9.06 User Guide", CD-ADAPCO Ltd. (2014).
  8. S. V. Patankar and D. B. Spalding, "A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-dimensional Parabolic Flows", Int. J. Heat Mass Transfer, Vol. 15, pp. 1787-1806 (1972). https://doi.org/10.1016/0017-9310(72)90054-3
  9. T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu, "A New k-Eddy Viscosity Model for Hight Reynolds Number Turbulent Flows Model Development and Validation", NASA, TM 106721 (1994).
  10. NFPA 101: 2006 "Lift Safety" (2006).
  11. NFPA 502: 2011 "Standard for Road Tunnels, Bridges, and Other Limited Access Highways" (2011).
  12. J. O. Yoo, "Guideline for the Installation of Road Tunnel Fire Safety Facilities and Quantitative Risk Assessment Methodology", Magazine of the SAREK, Vol. 41, No. 11, pp. 26-40 (2012).