References
- Balusamy, T. and Sadhishkumar, S., Performance improvement in solar water heating systems-A review. Renewable Sustainable Energy Review, Vol. 37, pp. 191-198, 2014. https://doi.org/10.1016/j.rser.2014.04.072
- Islam, M. R., Sumathy, K., and Khan, S. U., Solar water heating systems and their market trends. Renewable Sustainable Energy Review, Vol. 17, pp. 1-25, 2013. https://doi.org/10.1016/j.rser.2012.09.011
- Kulkarni, G. N., Kedare, S. B., and Bandyopadhyay, S., Determination of design space and optimization of solar water heating systems. Solar Energy, Vol. 81, No. 8, pp. 958-968, 2007. https://doi.org/10.1016/j.solener.2006.12.003
- Loomans, M. and Visser, H., Application of the genetic algorithm for optimization of large solar hot water systems. Solor Energy, Vol. 72, No. 5, pp. 427-439, 2002. https://doi.org/10.1016/S0038-092X(02)00020-8
- Kalogirou, S. A., Optimization of solar systems using artificial neural-networks and genetic algorithms. Applied Energy, Vol. 77, No. 4, pp. 383-405, 2004. https://doi.org/10.1016/S0306-2619(03)00153-3
- Atia, D. M., Fahmy, F. H., Ahmed, N. M., and Dorrah, H. T., Optimal sizing of a solar water heating system based on a genetic algorithm for an aquaculture system, Mathematical and Computer Modelling, Vol. 55, No. 3-4, pp. 1436-1449, 2012. https://doi.org/10.1016/j.mcm.2011.10.022
- Ko, M. J., Analysis and optimization design of a solar water heating system based on life cycle cost using a genetic algorithm, Energies, Vol. 8, No. 10, pp. 11380-11403. 2015. https://doi.org/10.3390/en81011380
- Ko, M. J., A novel design method for optimizing an indirect forced circulation solar water heating system based on life cycle cost using a genetic algorithm, Energies, Vol. 8, No. 10, pp. 11592-11617, 2015. https://doi.org/10.3390/en81011592
- Henderson, H., Huang, Y. J., and Parker, D., Residential equipment part load curve for use in DOE-2: Technical report LBNL-42175, Lawrence Berkeley National Laboratory, USA, 1999.
- Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, Chichester, Wiley, 2009.
- Konak, A., Coit, D. W., and Smith, A. E., Multi-objective optimization using genetic algorithms: A tutorial, Reliability Engineering & System Safety, Vol. 91, No. 9, pp. 992-1007, 2006. https://doi.org/10.1016/j.ress.2005.11.018
- Deru, M., Field, K., Studer, D., Benne, K. Griffith, B., Torcellini, P., Liu, B., Halverson, M., Winiarski, D., Yazdanian, M., Huang, J., and Crawley, D., U.S. Department of energy commercial reference building models off the national building stock, National Renewable Energy Laboratory, USA, 2011.
- Baughn, J. W. and Young, M. F., The calculated performance of a solar hot water system for a range of collector flow rates. Solar energy, Vol. 32, pp. 303-305, 1984. https://doi.org/10.1016/S0038-092X(84)80048-1
- Hobbi, A. and Siddiqui, K., Optimal design of a forced circulation solar water heating system for a residential unit in cold climate using TRNSYS. Solar energy, Vol. 83, pp. 700-714, 2009. https://doi.org/10.1016/j.solener.2008.10.018
- Kim, Y. D., Thu, K., Bhatia, H. K., and Bhatia, C. S., Thermal analysis and performance optimization of a solar hot water plant with economic evaluation. Solar energy, Vol. 86, pp. 1378-1395, 2012. https://doi.org/10.1016/j.solener.2012.01.030