DOI QR코드

DOI QR Code

Effect of varying levels of xylobiose in sugar on glycemic index and blood glucose response in healthy adults

자일로바이오스 첨가 비율이 다른 설탕이 건강한 성인의 혈당지수와 혈당반응에 미치는 영향

  • 이정숙 (국민대학교 식품영양학과) ;
  • 김아름 (국민대학교 식품영양학과) ;
  • 남혜경 (국민대학교 식품영양학과) ;
  • 경명옥 (대한제당(주) 중앙연구소) ;
  • 서승우 (대한제당(주) 중앙연구소) ;
  • 장문정 (국민대학교 식품영양학과)
  • Received : 2016.09.19
  • Accepted : 2016.10.07
  • Published : 2016.10.31

Abstract

Purpose: The objective of this study was to compare the effects of three different levels of xylobiose containing sucrose on glycemic indices based on oral glucose tolerance test (OGTT) and blood glucose response in healthy adults. Methods: Healthy adults (six male and five female participants, n = 11) underwent 14~16 hr of fasting. Subsequently, all participants took 50 g of available carbohydrates from glucose, sucrose containing 7% xylobiose (XB 7), sucrose containing 10% xylobiose (XB 10), or sucrose containing 14% xylobiose (XB 14) every week on the same day for 8 weeks. Finger prick blood was taken before and 15, 30, 45, 60, 90, and 120 min after starting to eat. Results: We observed reduction of the glycemic response to sucrose containing xylobiose. The glycemic indices of XB 7, XB 10, and XB 14 were 57.0, 53.6, and 49.7, respectively. The GI values of XB 7 were similar to those of foods with medium GI, and the GI values of XB 10 and XB 14 were similar to those of foods with low GI. The postprandial maximum blood glucose rise (Cmax) of XB 14 was the lowest among the test foods. XB 7, XB 10, and XB 14 showed significantly lower areas under the glucose curve (AUC) for 0~30 min, 0~60 min, 0~90 min and 0~120 min compared to glucose. Conclusion: The results of this study suggest that sucrose containing xylobiose has an acute suppressive effect on GI and postprandial maximum blood glucose rise. In addition, levels of xylobiose in sugar may allow more precise assessment of carbohydrate tolerance despite lower glycemic responses in a dose-dependent manner.

본 연구는 8주 동안 건강한 성인 남녀 11명을 대상으로 자일로바이오스 함유 비율이 다른 설탕 3종의 혈당 반응 및 GI 분석을 통해 혈당 저감 효과를 확인하였다. XB 7 (자일로바이오스 7% 함유 설탕), XB 10 (자일로바이오스 10% 함유 설탕), XB 14 (자일로바이오스 14% 함유 설탕)은 표준식품 (포도당)에 비해 섭취 후 최대 혈당 상승값이 유의적으로 낮았다. XB 7, XB 10 및 XB 14의 GI는 각각 57.0, 53.6, 49.7로 나타나 XB 7은 중GI 식품으로, XB 10, XB 14는 저GI 식품으로 분류되었고, 순수한 설탕의 GI 68에 비해 낮았다. AUC는 30~90분 사이에서 표준식품 (포도당)에 비해 비교식품 (XB 7, XB 10, XB 14)에서 유의적으로 낮았다. 따라서 자일로바이오스를 함유한 설탕은 혈당상승을 억제하는 효과가 있는 것으로 나타나고 있으며, 자일로바이오스 7% 함유보다는 자일로바이오스 10% 이상 함유 시 기능성 설탕으로의 효과를 기대할 수 있을 것으로 사료된다.

Keywords

References

  1. Ministry of Health and Welfare (KR). Adequate intake of sugars per day. Sejong: Ministry of Health and Welfare; 2015.
  2. Latulippe ME, Skoog SM. Fructose malabsorption and intolerance: effects of fructose with and without simultaneous glucose ingestion. Crit Rev Food Sci Nutr 2011; 51(7): 583-592. https://doi.org/10.1080/10408398.2011.566646
  3. Ministry of Food and Drug Safety (KR). The first comprehensive plan for the sugar reduction ('16 - '20). Osong: Ministry of Food and Drug Safety; 2016.
  4. Choi EH, Kim HY, Kim YH, Kim WK, Oh SJ, Kim SH. Effects of selected oligosaccharides on fecal microflora and lipid constitution in rats. Korean J Nutr 1999; 32(3): 221-229.
  5. Hidaka H, Eida T, Takizawa T, Tokunaga T, Tashiro Y. Effects of fructooligosaccharides on intestinal flora and human health. Bifidobact Microflora 1986; 5(1): 37-50. https://doi.org/10.12938/bifidus1982.5.1_37
  6. Fujikawa S, Okazaki M, Matsumoto N, Koga K. Properties and production of xylooligosaccharide. J Jpn Soc Starch Sci 1990; 37(2): 69-77. https://doi.org/10.5458/jag1972.37.69
  7. Lee OS, Rhee IK. The production of xylooligosaccharides with microbial xylanase. Food Ind Nutr 2001; 6(1): 21-24.
  8. Chapla D, Pandit P, Shah A. Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 2012; 115: 215-221. https://doi.org/10.1016/j.biortech.2011.10.083
  9. Okazaki M, Fujikawa S, Matsumoto N. Effect of xylooligosaccharide on the growth of bifidobacteria. Bifidobact Microflora 1990; 9(2): 77-86. https://doi.org/10.12938/bifidus1982.9.2_77
  10. Zhan FX, Wang QH, Jiang SJ, Zhou YL, Zhang GM, Ma YH. Developing a xylanase XYNZG from Plectosphaerella cucumerina for baking by heterologously expressed in Kluyveromyces lactis. BMC Biotechnol 2014; 14(1): 107. https://doi.org/10.1186/s12896-014-0107-7
  11. Degnan BA, Macfarlane GT. Comparison of carbohydrate substrate preferences in eight species of bifidobacteria. FEMS Microbiol Lett 1991; 68(2): 151-156. https://doi.org/10.1111/j.1574-6968.1991.tb04588.x
  12. Okazaki M, Koda H, Izumi R, Fujikawa S, Matsumoto N. In vitro digestibility and in vivo utilization of xylobiose. J Jpn Soc Nutr Food Sci 1991; 44(1): 41-44. https://doi.org/10.4327/jsnfs.44.41
  13. Guerfali M, Gargouri A, Belghith H. Talaromyces thermophilus beta-D-xylosidase: purification, characterization and xylobiose synthesis. Appl Biochem Biotechnol 2008; 150(3): 267-279. https://doi.org/10.1007/s12010-008-8260-x
  14. Rizzatti AC, Jorge JA, Terenzi HF, Rechia CG, Polizeli ML. Purification and properties of a thermostable extracellular beta-D-xylosidase produced by a thermotolerant Aspergillus phoenicis. J Ind Microbiol Biotechnol 2001; 26(3): 156-160. https://doi.org/10.1038/sj.jim.7000107
  15. Kyung M, Choe H, Jung S, Lee K, Jo S, Seo S, Choe K, Yang CK, Yoo SH, Kim Y. Effects of xylooligosaccharide-sugar mixture on glycemic index (GI) and blood glucose response in healthy adults. J Nutr Health 2014; 47(4): 229-235. https://doi.org/10.4163/jnh.2014.47.4.229
  16. Bae YJ, Bak YK, Kim B, Kim MS, Lee JH, Sung MK. Coconutderived D-xylose affects postprandial glucose and insulin responses in healthy individuals. Nutr Res Pract 2011; 5(6): 533-539. https://doi.org/10.4162/nrp.2011.5.6.533
  17. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 1996; 45(11): 1368-1374. https://doi.org/10.1016/S0026-0495(96)90117-1
  18. Moon S, Lee K, Kyung M, Jung S, Park Y, Yang CK. Study on the proper D-xylose concentration in sugar mixture to reduce glycemic index (GI) value in the human clinical model. Korean J Food Nutr 2012; 25(4): 787-792. https://doi.org/10.9799/ksfan.2012.25.4.787
  19. Kim E, Lim E, Jung S, Yoo SH, Kim Y. Xylobiose ameliorates hyperglycemia and dyslipidemia via regulating hepatic lipogenic genes in db/db mice. FASEB J 2016; 30(1 Suppl): 692.10.
  20. Meyer KA, Kushi LH, Jacobs DR Jr, Slavin J, Sellers TA, Folsom AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 2000; 71(4): 921-930. https://doi.org/10.1093/ajcn/71.4.921
  21. Montonen J, Knekt P, Jarvinen R, Aromaa A, Reunanen A. Wholegrain and fiber intake and the incidence of type 2 diabetes. Am J Clin Nutr 2003; 77(3): 622-629. https://doi.org/10.1093/ajcn/77.3.622
  22. Riccardi G, Rivellese AA, Giacco R. Role of glycemic index and glycemic load in the healthy state, in prediabetes, and in diabetes. Am J Clin Nutr 2008; 87(1): 269S-274S. https://doi.org/10.1093/ajcn/87.1.269S
  23. Ludwig DS. Dietary glycemic index and obesity. J Nutr 2000; 130(2S Suppl): 280S-283S. https://doi.org/10.1093/jn/130.2.280S
  24. Brand-Miller JC, Holt SH, Pawlak DB, McMillan J. Glycemic index and obesity. Am J Clin Nutr 2002; 76(1): 281S-285S. https://doi.org/10.1093/ajcn/76.1.281S
  25. Hodge AM, English DR, O'Dea K, Giles GG. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 2004; 27(11): 2701-2706. https://doi.org/10.2337/diacare.27.11.2701
  26. Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 2002; 76(1): 5-56. https://doi.org/10.1093/ajcn/76.1.5
  27. Nam H, Kyung M, Seo S, Jung S, Chang MJ. Effect of different levels of xylooligosaccharide in sugar on glycemic index and blood glucose response in healthy adults. J Nutr Health 2015; 48(5): 389-406.
  28. Wolever TM, Vorster HH, Bjorck I, Brand-Miller J, Brighenti F, Mann JI, Ramdath DD, Granfeldt Y, Holt S, Perry TL, Venter C, Xiaomei Wu. Determination of the glycaemic index of foods: interlaboratory study. Eur J Clin Nutr 2003; 57(3): 475-482. https://doi.org/10.1038/sj.ejcn.1601551
  29. Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TM. Glycaemic index methodology. Nutr Res Rev 2005; 18(1): 145-171. https://doi.org/10.1079/NRR2005100
  30. Raz I, Weiss R, Yegorchikov Y, Bitton G, Nagar R, Pesach B. Effect of a local heating device on insulin and glucose pharmacoki netic profiles in an open-label, randomized, two-period, one-way crossover study in patients with type 1 diabetes using continuous subcutaneous insulin infusion. Clin Ther 2009; 31(5): 980-987. https://doi.org/10.1016/j.clinthera.2009.05.010
  31. Crane RK, Forstner G, Eichholz A. Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro. Biochim Biophys Acta 1965; 109(2): 467-477. https://doi.org/10.1016/0926-6585(65)90172-X
  32. Imaizumi K, Nakatsu Y, Sato M, Sedarnawati Y, Sugano M. Effects of xylooligosaccharides on blood glucose, serum and liver lipids and cecum short-chain fatty acids in diabetic rats. Agric Biol Chem 1991; 55(1): 199-205. https://doi.org/10.1271/bbb1961.55.199
  33. Frost GS, Brynes AE, Dhillo WS, Bloom SR, McBurney MI. The effects of fiber enrichment of pasta and fat content on gastric emptying, GLP-1, glucose, and insulin responses to a meal. Eur J Clin Nutr 2003; 57(2): 293-298. https://doi.org/10.1038/sj.ejcn.1601520
  34. Delzenne NM, Cani PD, Neyrinck AM. Modulation of glucagonlike peptide 1 and energy metabolism by inulin and oligofructose: experimental data. J Nutr 2007; 137(11 Suppl): 2547S-2551S. https://doi.org/10.1093/jn/137.11.2547S
  35. Barclay AW, Petocz P, McMillan-Price J, Flood VM, Prvan T, Mitchell P, Brand-Miller JC. Glycemic index, glycemic load, and chronic disease risk--a meta-analysis of observational studies. Am J Clin Nutr 2008; 87(3): 627-637. https://doi.org/10.1093/ajcn/87.3.627
  36. Oba S, Nagata C, Nakamura K, Fujii K, Kawachi T, Takatsuka N, Shimizu H. Dietary glycemic index, glycemic load, and intake of carbohydrate and rice in relation to risk of mortality from stroke and its subtypes in Japanese men and women. Metabolism 2010; 59(11): 1574-1582. https://doi.org/10.1016/j.metabol.2010.02.004
  37. Lee K, Moon S, Jung S, Park YJ, Yoon S, Choe K, Yang C. Glycemic index of sucrose with D-xylose (Xf) in humans. Curr Top Nutraceutical Res 2013; 11(1-2): 35-40.

Cited by

  1. Comparing the effects of intake of sugar containing different levels of D-ribose in sugar on glycemic index and blood glucose response in healthy adults vol.50, pp.5, 2017, https://doi.org/10.4163/jnh.2017.50.5.426
  2. 슈케로를 첨가한 머핀의 품질특성 vol.23, pp.8, 2016, https://doi.org/10.20878/cshr.2017.23.8.001