DOI QR코드

DOI QR Code

Helium dielectric barrier discharge-cold plasma treatment for microbiological safety and preservation of onion powder

유전체 방벽 방전 콜드 플라즈마 기술을 이용한 양파 분말 미생물 안전성 향상 및 품질 보존

  • Won, Mee Yeon (Department of Food Science and Technology, Seoul Women's University) ;
  • Choi, Ha Young (Department of Food Science and Technology, Seoul Women's University) ;
  • Lee, Kwang Sik (Renosem Co., Ltd.) ;
  • Min, Sea Cheol (Department of Food Science and Technology, Seoul Women's University)
  • Received : 2016.07.23
  • Accepted : 2016.08.05
  • Published : 2016.10.31

Abstract

Efficacy of dielectric barrier discharge-cold plasma treatment (DBD-CPT) for microbial decontamination of onion powder was evaluated. Onion powder, inoculated with Escherichia coli O157:H7, Salmonella Enteritidis, or Listeria monocytogenes, was treated with helium DBD-CPT. DBD-CPT (9 kV, 20 min) inhibited E. coli O157:H7, S. Enteritidis, and L. monocytogenes by $1.4{\pm}0.5$, $2.3{\pm}0.3$, and $1.2{\pm}0.0log\;CFU/cm^2$, respectively. The inactivation levels of E. coli O157:H7, S. Enteritidis and L. monocytogenes increased by $2.2{\pm}0.1$, $2.5{\pm}0.1$ and $1.9{\pm}0.3log\;CFU/cm^2$, respectively, as water activity increased from 0.4 to 0.8, and increased by $2.3{\pm}0.4$, $2.1{\pm}0.1$ and $1.6{\pm}0.1log\;CFU/cm^2$, respectively, as the particle size increased from 0.3 to $1.0cm^2$. Neither the ascorbic acid and quercetin concentrations nor the color of onion powder was changed by DBD-CPT (p>0.05). These results demonstrate the potential for application of DBD-CPT in improving microbiological safety of onion powder while preserving the physicochemical properties.

DBD 방식의 콜드 플라즈마 처리는 양파 분말에 접종된 E. coli O157:H7, S. Enteritidis, L. monocytogenes를 효과적으로 저해시켰다. 콜드 플라즈마 처리에 의한 식중독균 억제 효과는 콜드 플라즈마 전압 증가에 따른 유의적인 차이를 보이지 않았지만, 콜드플라즈마 처리 시간에 따라 억제 효과가 유의적으로 증가함을 알 수 있었다. 또한, 양파 분말의 수분활성도가 높은 것과 입자 크기가 큰 것이 콜드 플라즈마를 이용하여 미생물을 억제 시키는데 유리하다는 것을 규명하였다. 본 연구에서 사용된 처리 조건에서의 DBD-CPT는 처리 시간과 관계없이 양파 분말의 비타민C 함량, 쿼세틴 함량, 그리고 색도에 영향을 주지 않았다. 따라서 DBD-CPT는 양파 분말의 이화학적 특성에 영향을 미치지 않으면서 CP 처리 시간, 양파 분말의 수분활성도와 크기 조절을 통해 식중독균을 효과적으로 억제 시킬 수 있음을 알 수 있었고 이로써 DBD-CPT가 양파 분말 식중독균 저감화에 사용 될 수 있는 비가열 살균 기술임을 확인 할 수 있었다.

Keywords

References

  1. Jung HA, Jung HS, Joo NM. Quality characteristics of whole and peeled garlic jangachi (korean pickle) by aging period. Korean J. Food Cook. Sci. 23: 940-946 (2007)
  2. Kang NS, Kim JH, Kim JK. Quality characteristics of onion jangaji during aging. Korean J. Food Preserv. 15: 796-803 (2008)
  3. Park SY, Yoo SS, Shim JH, Chin KB. Physicochemical properties, and antioxidant and antimicrobial effects of garlic and onion powder in fresh pork belly and loin during refrigerated storage. J. Food Sci. 73: C577-C584 (2008) https://doi.org/10.1111/j.1750-3841.2008.00896.x
  4. Pezzutti A, Matzkin MR, Croci CA. Gamma irradiation improved the quality of onion flakes used by argentine consumers. J. Food Process. Preserv. 29: 120-131 (2005) https://doi.org/10.1111/j.1745-4549.2005.00018.x
  5. Rodriguez-Romo LA, Heredia NL, Labbe RG, Garcia-Alvarado JS. Detection of enterotoxigenic Clostridium perfringens in spices used in mexico by dot blotting using a DNA probe. J. Food Prot. 61: 201-204 (1998) https://doi.org/10.4315/0362-028X-61.2.201
  6. McKee L. Microbial contamination of spices and herbs: A review. LWT-Food Sci. Technol. 28: 1-11 (1995) https://doi.org/10.1016/0023-6438(95)90018-7
  7. Woo HI, Kim JB, Choi JH, Kim EH, Kim DS, Park KS, Kim EJ, Eun JB, Om AS. Evaluation of the level of microbial contamination in the manufacturing and processing company of red pepper powder. J. Food Hyg. Saf. 27: 427-431 (2012) https://doi.org/10.13103/JFHS.2012.27.4.427
  8. Anto A, Bv K, Gc J, Hebbar HU. Recent developments in superheated steam processing of foods-a review. Cr. Rev. Food Sci. Nutr. 56: 2191-2208 (2016) https://doi.org/10.1080/10408398.2012.740641
  9. Kim SY, Sagong HG, Choi SH, Ryu SR, Kang DH. Radio-frequency heating to inactivate Salmonella typhimurium and Escherichia coli O157: H7 on black and red pepper spice. Int. J. Food Microbiol. 153: 171-175 (2012) https://doi.org/10.1016/j.ijfoodmicro.2011.11.004
  10. Cheon HL, Shin JY, Park KH, Chung MS, Kang DH. Inactivation of foodborne pathogens in powdered red pepper (Capsicum Annuum L.) using combined UV-C irradiation and mild heat treatment. Food Control 50: 441-445 (2015) https://doi.org/10.1016/j.foodcont.2014.08.025
  11. Farkas J. Radiation Decontamination of spices, herbs, condiments and other dried food ingredients. pp. 291-312. In: Food Irradiation: Principles and Applications. Molins RA (ed). John Wiles & Sons, New York, NY, USA (2001)
  12. Taechapairoj C, Dhuchakallaya I, Soponronnarit S, Wetchacama S, Prachayawarakorn S. Superheated steam fluidised bed paddy drying. J. Food Eng. 58: 67-73 (2003) https://doi.org/10.1016/S0260-8774(02)00335-7
  13. Rico CW, Kim GR, Ahn JJ, Kim HK, Furuta M, Kwon JH. The comparative effect of steaming and irradiation on the physicochemical and microbiological properties of dried red pepper (Capsicum annuum L.). Food Chem. 119: 1012-1016 (2010) https://doi.org/10.1016/j.foodchem.2009.08.005
  14. Fine F, Gervais P. Efficiency of pulsed UV light for microbial decontamination of food powders. J. Food Prot. 67: 787-792 (2004) https://doi.org/10.4315/0362-028X-67.4.787
  15. Song HP, Kim B, Choe JH, Jung S, Moon SY, Choe WH, Jo CR. Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiol. 26: 432-436 (2010)
  16. Misra N, Tiwari B, Raghavarao K, Cullen PJ. Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 3: 159-170 (2011) https://doi.org/10.1007/s12393-011-9041-9
  17. Schweiggert U, Carle R, Schieber A. Conventional and alternative processes for spice production-a review. Trends Food Sci. Technol. 18: 260-268 (2007) https://doi.org/10.1016/j.tifs.2007.01.005
  18. Kim JE, Lee DU, Min SC. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 38: 128-136 (2014) https://doi.org/10.1016/j.fm.2013.08.019
  19. Laroussi M, Mendis D, Rosenberg M. Plasma interaction with microbes. New J. Phys. 5: 41 (2003) https://doi.org/10.1088/1367-2630/5/1/341
  20. Oh YJ, Lee HN, Kim JE, Lee SH, Cho HY, Min SC. Cold plasma treatment application to improve microbiological safety of infant milk powder and onion powder. Korean J. Food Sci. Technol. 47: 486-491 (2015) https://doi.org/10.9721/KJFST.2015.47.4.486
  21. Misra NN, Keener KM, Bourke P, Mosnier J, Cullen PJ. In-package atmospheric pressure cold plasma treatment of cherry tomatoes. J. Biosci Bioeng. 118: 177-182 (2014) https://doi.org/10.1016/j.jbiosc.2014.02.005
  22. Misra N, Patil S, Moiseev T, Bourke P, Mosnier J, Keener K, Cullen P. In-package atmospheric pressure cold plasma treatment of strawberries. J. Food Eng. 125: 131-138 (2014) https://doi.org/10.1016/j.jfoodeng.2013.10.023
  23. Yong HI, Kim HJ, Park SH, Alahakoon AU, Kim KJ, Choe WH, Jo C. Evaluation of pathogen inactivation on sliced cheese induced by encapsulated atmospheric pressure dielectric barrier discharge plasma. Food Microbiol. 46: 46-50 (2015) https://doi.org/10.1016/j.fm.2014.07.010
  24. Pankaj SK, Bueno-Ferrer C, Misra N, O'Neill L, Jimenez A, Bourke P, Cullen P. Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma. Innov. Food Sci. Emerg. 21: 107-113 (2014) https://doi.org/10.1016/j.ifset.2013.10.007
  25. Winston PW, Bates DH. Saturated solutions for the control of humidity in biological research. Ecology 41: 232-237 (1960) https://doi.org/10.2307/1931961
  26. Elhassaneen Y, Sanad M. Phenolics, Selenium, Vitamin C, Amino acids and pungency levels and antioxidant activities of two egyptian onion varieties. Am. J. Food Technol. 4: 241-254 (2009) https://doi.org/10.3923/ajft.2009.241.254
  27. Hamauzu Y, Nosaka T, Ito F, Suzuki T, Torisu S, Hashida M, Fukuzawa A, Ohguchi M, Yamanaka S. Physicochemical characteristics of rapidly dried onion powder and its anti-atherogenic effect on rats red high-fat diet. Food Chem. 129: 810-815 (2011) https://doi.org/10.1016/j.foodchem.2011.05.027
  28. Daeschlein G, Scholz S, Arnold A, von Podewils S, Haase H, Emmert S, von Woedtke T, Weltmann K, Jünger M. In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process. Polym. 9: 380- 389 (2012) https://doi.org/10.1002/ppap.201100160
  29. Niemira BA. Cold plasma decontamination of foods. Annu. Rev. Food Sci. Technol. 3: 125-142 (2012) https://doi.org/10.1146/annurev-food-022811-101132
  30. Baier M, Janbben T, Wieler LH, Ehlbeck J, Knorr D, Schlüter O. Inactivation of shiga toxin-producing Escherichia coli O104: H4 using cold atmospheric pressure plasma. J. Biosci. Bioeng. 120: 275-279 (2015) https://doi.org/10.1016/j.jbiosc.2015.01.003
  31. Lee HN, Kim JE, Chung M, Min SC. Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiol. 51: 74-80 (2015) https://doi.org/10.1016/j.fm.2015.05.004
  32. Knorr D, Froehling A, Jaeger H, Reineke K, Schlueter O, Schoessler K. Emerging technologies in food processing. Annu. Rev. Food Sci. Technol. 2: 203-235 (2011) https://doi.org/10.1146/annurev.food.102308.124129
  33. Wang RX, Nian WF, Wu HY, Feng HQ, Zhang K, Zhang J, Zhu WD, Becker KH, Fang J. Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: Inactivation and physiochemical properties evaluation. Eur. Phys. J. D. 66: 1-7 (2012) https://doi.org/10.1140/epjd/e2011-10641-3
  34. Ramazzina I, Berardinelli A, Rizzi F, Tappi S, Ragni L, Sacchetti G, Rocculi P. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol. Technol. 107: 55-65 (2015) https://doi.org/10.1016/j.postharvbio.2015.04.008
  35. Almela L, Nieto-Sandoval JM, Fernandez Lopez JA. Microbial inactivation of paprika by a high-temperature short-x time treatment. Influence on color properties. J. Agric. Food Chem. 50: 1435-1440 (2002) https://doi.org/10.1021/jf011058f