DOI QR코드

DOI QR Code

Genetic Algorithm Based Optimal Structural Design Method for Cost and CO2 Emissions of Reinforced Concrete Frames

철근콘크리트 모멘트골조의 비용 및 이산화탄소 배출량을 고려한 유전자알고리즘 기반 구조최적화기법

  • Lee, Min-Seok (Department of Architectural Engineering, Yonsei University) ;
  • Hong, Kappyo (Department of Architectural Engineering, Yonsei University) ;
  • Choi, Se-Woon (Department of Architecture, Catholic University of Daegu)
  • 이민석 (연세대학교 건축공학과) ;
  • 홍갑표 (연세대학교 건축공학과) ;
  • 최세운 (대구가톨릭대학교 건축학부)
  • Received : 2016.07.27
  • Accepted : 2016.09.28
  • Published : 2016.10.30

Abstract

In this study, the genetic algorithm based optimal structural design method is proposed. The objective functions are to minimize the cost and $CO_2$ emissions, simultaneously. The cost and $CO_2$ emissions are calculated based on the cross-sectional dimensions, length, material strength, and reinforcement ratio of beam and column members. Thus, the cost and $CO_2$ emissions are evaluated by using the amounts of concrete and reinforcement used to construct a building. In this study, the cost and $CO_2$ emissions calculated at the phases of material transportation, construction, and building operation are excluded. The constraint conditions on the strength of beam and column members and the inter-story drift ratio are considered. The linear static analysis by using OpenSees is automatically conducted in the proposed method. The genetic algorithm is employed to solve the formulated problem. The proposed method is validated by applying it to the 4-story reinforced concrete moment frame example.

연구에서는 철근콘크리트 건물에 대한 유전자 알고리즘 기반의 최적구조설계기법을 제시하고자 한다. 목적함수는 구조물의 비용과 이산화탄소 배출량을 동시에 각각 최소화하는 것이다. 비용 및 인산화탄소 배출량은 구조설계안에서 얻을 수 있는 단면치수, 부재길이, 재료강도, 철근량 등과 같은 설계정보를 통해 계산한다. 즉, 구조물의 물량을 기초로 하여 비용과 이산화탄소 배출량을 평가한다. 재료의 운반, 시공 및 건물 운영 단계에서 발생하는 비용 및 이산화탄소 배출량은 본 연구에서 제외한다. 제약조건은 철근콘크리트 건물을 구성하는 기둥과 보 부재의 강도조건과 층간변위조건이 고려된다. 제약조건을 평가하기 위해 OpenSees를 활용한 선형정적해석이 수행된다. 제약조건을 만족시키면서 목적함수에 대해 최소의 값을 제시하는 설계안을 찾기 위해 유전자 알고리즘이 사용된다. 제시한 알고리즘의 적용성을 검증하기 위해 4층 철근콘크리트 모멘트 골조 예제에 제시하는 기법을 적용하여 검증한다.

Keywords

References

  1. ACI 318-08 (2008) Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute.
  2. ASCE.(2006) Minimum Design Loads for Buildings and other Structures(ASCE 7-05). New York(NY): American Society of Civil Engineer.
  3. Chan, C.M., Zou, X.K. (2004) Elastic and Inelastic Drift Performance Optimization for Reinforced Concrete Buildings under Earthquake Loads, Earthq. Eng. & Struct. Dyn., 33, pp.929-950. https://doi.org/10.1002/eqe.385
  4. Choi, S.W., Jeon, J.H., Lee, H., Kim, Y., Park, H.S. (2013) $CO_2$ Emissions Evaluation for Steel Reinforced Concrete Columns Based on the Optimal Structural Design, J. Comput. Struct. Eng. Inst. Korea, 26, pp.335-342. https://doi.org/10.7734/COSEIK.2013.26.5.335
  5. Choi, S.W., Kim, Y., Lee, J., Hong, K., Park, H.S. (2013) Minimum Column-to-Beam Strength Ratios for Beam-hinge Mechanisms Based on Multi-objective Seismic Design, J. Constr. Steel Res., 88, pp.53-62. https://doi.org/10.1016/j.jcsr.2013.05.004
  6. Choi, S.W., Park, H.S. (2012) Multi-objective Seismic Design Method for Ensuring Beam-hinging Mechanism in Steel Frames, J. Constr. Steel Res., 74, pp.17-25. https://doi.org/10.1016/j.jcsr.2012.01.012
  7. Farhat, F., Nakamura, S., Takahashi, K. (2009) Application of Genetic Algorithm to Optimization of Buckling Restrained Braces for Seismic Upgrading of Existing Structures, Comput. & Struct. 87, pp.110-119. https://doi.org/10.1016/j.compstruc.2008.08.002
  8. Fragiadakis, M., Papadrakakis, M. (2008) Performance-based Optimum Seismic Design of Reinforced Concrete Structures, Earthq. Eng. & Struct. Dyn., 37, pp.825-844. https://doi.org/10.1002/eqe.786
  9. Jung, Y.B., Yang, K.H. (2015) Mixture-Proportioning Model for Low-$CO_2$ Concrete Considering the Type and Addition Level of Supplementary Cementitious Materials, J. Korea Concr. Inst., 27, pp. 427-434. https://doi.org/10.4334/JKCI.2015.27.4.427
  10. Kwak, H.G., Kim, J.E. (2007) Optimum Design of Reinforced Concrete Plane Frames Based on Section Database, J Comput.l Struct. Eng. Inst Korea, 20, pp.165-179.
  11. Liu, M., Burns, S.A., Wen, Y.K. (2005) Multiobjective Optimization for Performance-Based Seismic Design of Steel Moment Frame Structures, Earthq. Eng. & Struct. Dyn., 34, pp.289-306. https://doi.org/10.1002/eqe.426
  12. Nimtawat, A., Nanakorn, P. (2009) Automated Layout Design of Beam-slab Floors using a Genetic Algorithm, Comput. & Struct., 87, pp.1308-1330. https://doi.org/10.1016/j.compstruc.2009.06.007
  13. Oh, B.K., Park, J.S., Choi, S.W. Park, H.S. (2016) Design Model for Analysis of Relationships Among $CO_2$ Emissions, Cost, and Structural Parameters in Green Building Construction with Composite Columns, Energy & Build., 118, pp. 30-315.
  14. Park, H.S., Kwon, B., Shin, Y., Kim, Y., Hong, T., Choi, S.W. (2013) Cost and $CO_2$ Emission Optimization of Steel Reinforced Concrete Columns in High-rise Buildings, Energies, 6, pp.5609-5624. https://doi.org/10.3390/en6115609
  15. Park, H.S., Lee, H., Kim, Y., Hong, T., Choi, S.W. (2014) Evaluation of the Influence of Design Factors on the $CO_2$ Emissions and Costs of Reinforced Concrete Columns, Energy & Build., 82, pp.378-384. https://doi.org/10.1016/j.enbuild.2014.07.038
  16. Xu, C., Lin, S., Yang, Y. (2015) Optimal Design of Viscoelastic Damping Structures using Layerwise Finite Element Analysis and Multi-objective Genetic Algorithm, Comput. & Struct., 157, pp.1-8. https://doi.org/10.1016/j.compstruc.2015.05.005
  17. Yeo, D., Gabbai, R.D. (2011) Sustainable Design of Reinforced Concrete Structures Through Embodied Energy Optimization, Energy & Build., 43, pp.2028-2033. https://doi.org/10.1016/j.enbuild.2011.04.014