DOI QR코드

DOI QR Code

가로 가둠을 통한 자성층간 결합 기여도 조절

Tailoring Magnetic Interlayer Coupling Contribution via Lateral Confinement

  • 투고 : 2016.09.25
  • 심사 : 2016.10.17
  • 발행 : 2016.10.31

초록

Fe/Gd 다층박막 내 자성층간 결합에 미치는 패턴의 영향을 연구하였다. 이를 위하여 하나의 다층박막 시료를 나누어서 패턴한 것과 패턴하지 않은 것으로 제작하여 비교하였다. X선 자기 원편광 이색성(X-ray magnetic circular dichrosim: XMCD)을 이용하여 Gd 원소에 선택적인 자화 벡터의 온도 변화를 비교한 결과, 패턴 시료의 경우 Gd 자화 벡터의 온도의존성이 패턴 전에 비해 뚜렷하게 변화했음을 관측하였다. 이는 패턴 효과와 반강자성의 층간 결합 효과가 서로 경쟁하여 나타난 결과이다.

In Fe/Gd multilayers, patterning effect on the interlayer coupling was studied by comparing patterned and unpatterned samples that were cut from a multilayer film. A comparative study of the two samples via temperature dependent Gd-specific magnetization vector using X-ray magnetic circular dichroism (XMCD) shows that the temperature dependence of the Gd magnetization vector can be modified in the patterned sample due to a competition between the patterning and antiferromagnetic interlayer coupling effects.

키워드

참고문헌

  1. S. D. Bader, Rev. Mod. Phys. 78, 1 (2006). https://doi.org/10.1103/RevModPhys.78.1
  2. L. Piraux, V. A. Antohe, F. A. Araujo, S. K. Srivastava, M. Hehn, D. Lacour, S. Mangin, and T. Hauet, Appl. Phys. Lett. 101, 013110 (2012). https://doi.org/10.1063/1.4731640
  3. K. Noh, C. Choi, H. Kim, Y. Oh, J.-Y. Kim, D. Hong, L.-H. Chen, and S. Jin, IEEE Trans. Magn. 47, 3478 (2011). https://doi.org/10.1109/TMAG.2011.2159782
  4. T. L. Hylton, M. A. Parker, K. R. Coffey, J. K. Howard, R. Fontana, and C. Tsang, Appl. Phys. Lett. 67, 1154 (1995). https://doi.org/10.1063/1.114992
  5. F. J. Castano, S. Haratani, Y. Hao, C. A. Ross, and Henry I. Smith, Appl. Phys. Lett. 81, 2809 (2002). https://doi.org/10.1063/1.1512327
  6. A. Hoffmann, M. Grimsditch, J. E. Pearson, J. Nogues, W. A. A. Macedo, and I. K. Schuller, Phys. Rev. B 67, 220406 (2003). https://doi.org/10.1103/PhysRevB.67.220406
  7. C. C. Wang, A. O. Adeyeye, and N. Singh, Appl. Phys. Lett. 88, 222506 (2006). https://doi.org/10.1063/1.2208276
  8. R. E. Camley and D. R. Tilley, Phys. Rev. B 37, 3413 (1988). https://doi.org/10.1103/PhysRevB.37.3413
  9. R. P. Cowburn, A. O. Adeyeye, and J. A. C. Bland, Appl. Phys. Lett. 70, 2309 (1997). https://doi.org/10.1063/1.118845
  10. L. Torres, L. Lopez-Diaz, and J. Iniguez, Appl. Phys. Lett. 73, 3766 (1998). https://doi.org/10.1063/1.122888
  11. A. Yu. Toporov, R. M. Langford, and A. K. Petford-Long, Appl. Phys. Lett. 77, 3063 (2000). https://doi.org/10.1063/1.1323737
  12. D. R. Lee, Y. Choi, C.-Y. You, J. C. Lang, D. Haskel, G. Srajer, V. Metlushko, B. Illic, and S. D. Bader, Appl. Phys. Lett. 81, 4997 (2002). https://doi.org/10.1063/1.1532552
  13. L. G. Parratt, Phys. Rev. 95, 359 (1954). https://doi.org/10.1103/PhysRev.95.359
  14. D. R. Lee, Y. J. Park, D. Kim, Y. H. Jeong, and K.-B. Lee, Phys. Rev. B 57, 8786 (1998). https://doi.org/10.1103/PhysRevB.57.8786
  15. J. C. Lang and G. Srajer, Rev. Sci. Instrum. 66, 1540 (1995). https://doi.org/10.1063/1.1145902
  16. Z. Zhong, D. Chapman, B. Bunker, G. Bunker, R. Fischetti, and C. Segre, J. Synchrotron Rad. 6, 212 (1999). https://doi.org/10.1107/S0909049599002022
  17. G. Schutz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and G. Materlik, Phys. Rev. Lett. 58, 737 (1987). https://doi.org/10.1103/PhysRevLett.58.737
  18. Y. Choi, D. Haskel, A. Cady, J. C. Lang, D. R. Lee, G. Srajer, J. S. Jiang, and S. D. Bader, Phys. Rev. B 73, 174401 (2006). https://doi.org/10.1103/PhysRevB.73.174401
  19. E. A. Stern and S. M. Heald, in Handbook of Synchrotron Radiation, edited by E. E. Koch, North-Holland, New York (1983).
  20. D. R. Lee, J. Korean Magn. Soc. 20, 160 (2010). https://doi.org/10.4283/JKMS.2010.20.4.160