DOI QR코드

DOI QR Code

Analysis of Factors Influencing the Integrated Bolus Peak Timing in Contrast-Enhanced Brain Computed Tomographic Angiography

Computed Tomographic Angiography (CTA)의 검사 시 조영제 집적 정점시간에 영향을 미치는 특성 인자를 분석

  • Son, Soon-Yong (Department of Radiological Technology, Wonkwang Health Science University) ;
  • Choi, Kwan-Woo (Department of Radiology, Asan Medical Center) ;
  • Jeong, Hoi-Woun (Department of Radiological Technology, Baekseok Culture University College) ;
  • Jang, Seo-Goo (Department of Medical Science, Soonchunhyang University) ;
  • Jung, Jae-Yong (Department of Radiation Oncology, Sanggye Paik Hospital) ;
  • Yun, Jung-Soo (Department of Radiology, Samsung Medical Center) ;
  • Kim, Ki-Won (Department of Radiology, Kyung Hee University Hospital at Gang-dong) ;
  • Lee, Young-Ah (Department of Bio-Technologist and Laboratory Animal, Shingu University College) ;
  • Son, Jin-Hyun (Department of Radiological Technology, Shingu University College) ;
  • Min, Jung-Whan (Department of Radiological Technology, Shingu University College)
  • 손순룡 (원광보건대학교 방사선과) ;
  • 최관우 (서울아산병원 영상의학과) ;
  • 정회원 (백석문화대학교 방사선과) ;
  • 장서구 (순천향대학교 의과학과) ;
  • 정재용 (상계백병원 종양학과) ;
  • 윤정수 (서울삼성병원 영상의학과) ;
  • 김기원 (강동경희대병원 영상의학과) ;
  • 이영아 (신구대학교 바이오 동물학과) ;
  • 손진현 (신구대학교 방사선과) ;
  • 민정환 (신구대학교 방사선과)
  • Received : 2016.01.27
  • Accepted : 2016.03.15
  • Published : 2016.03.31

Abstract

The objective of this study was to analyze the factors influencing integrated bolus peak timing in contrast-enhanced computed tomographic angiography (CTA) and to determine a method of calculating personal peak time. The optimal time was calculated by performing multiple linear regression analysis, after finding the influence factors through correlation analysis between integrated peak time of contrast medium and personal measured value by monitoring CTA scans. The radiation exposure dose in CTA was $716.53mGy{\cdot}cm$ and the radiation exposure dose in monitoring scan was 15.52 mGy (2 - 34 mGy). The results were statistically significant (p < .01). Regression analysis revealed, a -0.160 times decrease with a one-step increase in heart rate in male, and -0.004, -0.174, and 0.006 times decrease with one-step in DBP, heart rate, and blood sugar, respectively, in female. In a consistency test of peak time by calculating measured peak time and peak time by using the regression equation, the consistency was determined to be very high for male and female. This study could prevent unnecessary dose exposure by encouraging in clinic calculation of personal integrated peak time of contrast medium prior to examination.

Computed tomographic angiography (CTA)의 (조영제 집적 정점시간에 영향을 미치는 특성 인자를 분석하여: analyzing factors influencing on the integrated bolus peak timing in contrast-enhanced) 개인별 정점 시간을 계량적(Systems analysis)으로 산정해 검사에 직접 적용함으로써 예비검사(monitoring scan)에 의한 불필요한 방사선 피폭을 예방하는데 목적이 있다. CTA의 예비검사(monitoring scan)을 통해 얻은 조영제 집적 정점시간과 개인별 측정치들 간의 상관관계분석을 통해 영향인자를 파악한 다음, 다중선형회귀분석에 의한 회귀식으로 적정시간을 산출하였다. 결과로는 CTA의 평균 방사선 노출량은 $716.53mGy{\cdot}cm$였고, 예비검사(monitoring scan) 15.52 mGy (2 ~ 34 mGy)로 나타났다. 장기별 변환요소(conversion factor)를 적용한 결과, 전체 선량은 평균 1.5 mSv였고, 예비검사 선량은 0.23 mSv로 나타났다. 특성인자의 측정치와 조영제 정점시간의 상관관계분석 결과, 남성은 심박동수에서, 여성은 심박동수와 최저혈압, 혈당에서 음의 상관관계를 보였으며, 통계적으로 매우 유의하였다(p<.01). 회귀분석결과, 남성은 심박동수가 한 단계 증가할 때마다 -0.160배로, 여성은 최저혈압과 심박동수, 혈당에 따라 각각 -0.004, -0.174, -0.006배로 유의하게 감소하였다. 실측한 조영제 정점시간과 회귀식에 의해 산출된 정점시간의 일치도 검사에서 남여 대상자 모두에서 일치도가 매우 높았다. 본 연구에서는 검사 전에 환자 개인별 조영제 집적 정점시간을 산정하여 적용하면 예비검사를 생략함으로써 불필요한 방사선피폭을 예방할 수 있을 것으로 사료된다.

Keywords

References

  1. Kim MS, Kuk EY, Kim YM, Chun MR, Chung SW, Lee HB. The carotid artery ultrasonogrphy's usefulness for the prediction of ischemic brain vessel disease. Korean Society of Medical Sonographers,: 3(1), 15, 2012
  2. Hirai T, Korogi Y, Ono K, Nagano M, Maruoka K, Uemura S, Takahashi M. Prospective evaluation of suspected stenooccluive disease of the intracranial artery: combined MR angiography and CT angiography compared with digital subtraction angiography. AJNRAm J Neuroradiol, 23(1), 93, 2002
  3. Ji YS, Lee BJ. Usefulness of 3-dimensional gadolinium-enhanced MR angiography for the evaluation of pedal artery: comparison with digital subtraction angiography. J Korean Radiol Soc, 47, 21, 2002 https://doi.org/10.3348/jkrs.2002.47.1.21
  4. Jeong-Keun Lee, Young-Ill Jang, Seong-Joo Jang: A study on variation types in celiac axis and superior mesenteric artery using 3D volume rendering of M DCT. Journal of Radiological Science and Technology, 36(2), 131-139, 2013
  5. Goldenberg G, Reisner TH. Angiographic findings in relation to clinical course and results of computed tomography in cerebrovascular disease. EUR Neurol, 22, 124, 1983
  6. Rubin GD, Schmidt AJ, Logan LJ, Sofilos MC. Multi-detector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology, 221(1), 146, 2001 https://doi.org/10.1148/radiol.2211001325
  7. Schramm P, Schellinger PD, Klotz E, Kallenberg K, Fiebach JB, KKlkens S, et al. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours'duration. Stroke, 35(7), 1652, 2004 https://doi.org/10.1161/01.STR.0000131271.54098.22
  8. Lin CH, Chen YY, Chiu LA, Lee KW. Dual energy computed tomography angiography for the rapid diagnosis of reversible cerebral vasoconstriction syndromes: report of a case. Acta Neurol Taiwan, 22(1), 36, 2013
  9. Lee W. Technical aspect of coronary CT angiography : Imaging tips and safety issues, J Korean Med Assoc, 50(2), 104, 2007 https://doi.org/10.5124/jkma.2007.50.2.104
  10. Kirchner J, K ickuth R , Laufer U , Noack M , Liermann D. Optimized enhancement in helical CT: experiences with a real-time bolus tracking system in 628patients. Clin Radiol, 55(5), 368, 2000 https://doi.org/10.1053/crad.2000.0376
  11. Brenner DJ, Hall EJ. Computed tomography an increasing source of radiation exposure. N Engl J Med, 357(22), 2277, 2007 https://doi.org/10.1056/NEJMra072149
  12. Hany TF, McKinnon GC, Leung DA, Pfammatter T, Debatin JF. Optimization of contrast timing for breath-hold three dimentional MR angiography. J Magn Reson Imaging, 7(3), 551, 1997 https://doi.org/10.1002/jmri.1880070316
  13. Strouse PJ, Prince MR, Chenevert TL. Effect of the rate of gadopentetate dimeglumine administration on abdominal vascular and soft-tissue MR imaging enhancement patterns. Radiology, 201(3), 809, 1996 https://doi.org/10.1148/radiology.201.3.8939236
  14. Seo MR. Usefulness of test bolus injection on contrast-enhanced 3D FISP abdominal MR angiography. University of Ulsan, 1998
  15. Bae KT. Test-bolus versus bolus-tracking techniques for CT angiographic timing. Radiology, 236(1), 369, 2005 https://doi.org/10.1148/radiol.2361050123
  16. Park SM, Kim YK, Kwon JN, Shin WJ, Son YH, Jeong HY, et al. Cerebral blood flow as measured by TCD in hyperlipidemic group. Korean J Oriental Physiology & Pathology, 23(6), 1513, 2009
  17. Paksoy Y, GenK BO, GenK E. Retrograde flow in the left inferior petrosal sinus and blood steal of the cavernous sinus associated with central vein stenosis: MR angiographic findings. AJNR Am J Neuroradiol, 24(7), 1364, 2003
  18. You SY, Yoon DY, Choi CS, Chang SK, Yun EJ, Seo YL, et al. Effects of right-versus left-arm injections of contrast material on computed tomography of the head and neck. J Comput Assist Tomogr, 31(5), 677, 2007 https://doi.org/10.1097/RCT.0b013e318038d8fb
  19. Yakup Y, Bora P, Barbaros C, Bozkurt G, Burak D, Cenk BY. Endovascular management of iatrogenic renal artery aneurysm and arteriovenous fistula. Saudi J Kidney Dis Transpl, 23(4), 838, 2012 https://doi.org/10.4103/1319-2442.98180
  20. Dinkel HP, Fieger M, KnKpffer J, Moll R, Schindler G. Optimizing liver contrast in helical liver CT: value of a real-time bolus-triggering technique. Eur Radiol, 8(9), 1608, 1998 https://doi.org/10.1007/s003300050596
  21. Bae KT, Heiken JP, Brink JA. Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate-pharmacokinetic analysis and experimental porcine model. Radiology, 206(2), 455, 1998 https://doi.org/10.1148/radiology.206.2.9457200
  22. Kim JK, Farb RI, Wright GA. Test bolus examination in the carotid artery at dynamic gadolinium-enhanced MR angiography. Radiology, 206(1), 283, 1998 https://doi.org/10.1148/radiology.206.1.9423685
  23. Cai Z, Stolpen A, Sharafuddin MJ, McCabe R, Bai H, Potts T, et al. Bolus characteristics based on Magnetic Resonance Angiography. Biomed Eng Online, 5, 53, 2006 https://doi.org/10.1186/1475-925X-5-53
  24. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol, 176(2), 289, 2001 https://doi.org/10.2214/ajr.176.2.1760289
  25. Pierce DA, Preston DL. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res, 154(2), 178, 2000 https://doi.org/10.1667/0033-7587(2000)154[0178:RRCRAL]2.0.CO;2