DOI QR코드

DOI QR Code

건강검진센터의 의료방사선 피폭 품질관리 시스템 구축 운영 경험 보고

Set Up and Operation for Medical Radiation Exposure Quality Control System of Health Promotion Center

  • 김정수 (고려대학교 보건과학연구소) ;
  • 정혜경 (차의과대학교 분당차병원 영상의학과) ;
  • 김정민 (고려대학교 보건환경융합학부)
  • Kim, Jung-Su (The Institute of Health Science Research, Korea University) ;
  • Jung, Hae-Kyoung (Department of Diagnostic Radiology, CHA Bundang Medical Center, CHA University) ;
  • Kim, Jung-Min (Department of Health and Environmental Science, Korea University)
  • 투고 : 2016.02.15
  • 심사 : 2016.03.18
  • 발행 : 2016.03.31

초록

모든 의료방사선 검사는 정당성과 최적화가 확보되어야 한다. 특히 질병의 예방과 조기 진단을 목적으로 하는 건강검진에서 방사선 피폭의 최적화를 위한 모니터링은 절대적으로 필요하다. 본 연구에서는 DICOM 규격을 이용하여 건강검진센터의 의료방사선 피폭 품질관리 사례에 대해 보고하고자 한다. 적용된 시스템을 이용하여 건강검진센터의 진단참고 값을 제정하고 이를 통한 품질관리를 시행하였다. CT에서는 전체 703명에 대한 진단참고 값으로 복부검사에서 $357.9mGy{\cdot}cm$, 두부검사에서 $572.38mGy{\cdot}cm$, 심장혈관 칼슘검사에서 $55.92mGy{\cdot}cm$, 저선량 폐 검사에서 $53.98mGy{\cdot}cm$, 경추 검사에서 $284.99mGy{\cdot}cm$, 요추 검사에서 $341.85mGy{\cdot}cm$를 도출 하였으며, 흉부 X선 검사 1955건에 대해 $274.0mGy{\cdot}cm$2과 유방 촬영에서는 6.09 mGy의 진단참고 값를 도출하였다. 본 연구에서 개발된 시스템은 건강검진센터에서 수검자에 조사되는 방사선의 피폭선량을 실시간으로 모니터링하고 이를 이용한 피폭선량의 최적화와 정당화를 위한 품질관리 도구로 활용될 것이다.

In this study, standard model of medical radiation dosage quality control system will be suggested and the useful of this system in clinical field will be reviewed. Radiation dosage information of modalities are gathered from digital imaging and communications in medicine(DICOM) standard data(such as DICOM dose SR and DICOM header) and stored in database. One CT scan, two digital radiography modalities and two mammography modalities in one health promotion center in Seoul are used to derive clinical data for one month. After 1 months research with 703 CT scans, the study shows CT $357.9mGy{\cdot}cm$ in abdomen and pelvic CT, $572.4mGy{\cdot}cm$ in brain without CT, $55.9mGy{\cdot}cm$ in calcium score/heart CT, screening CT at $54mGy{\cdot}cm$ in chest screening CT(low dose screening CT scan), $284.99mGy{\cdot}cm$ in C-spine CT and $341.85mGy{\cdot}cm$ in L-spine CT as health promotion center reference level of each exam. And with 1955 digital radiography cases, it shows $274.0mGy{\cdot}cm2$ and for mammography 6.09 mGy is shown based on 536 cases. The use of medical radiation shall comply with the principles of justification and optimization. This quality management of medical radiation exposure must be performed in order to follow the principle. And the procedure to reduce the radiation exposure of patients and staff can be achieved through this. The results of this study can be applied as a useful tool to perform the quality control of medical radiation exposure.

키워드

참고문헌

  1. Jong Won Gil, Jong Hyock Park, Min Hui Park, et. al: Estimated Exposure Dose and Usage of Radiological Examination of the National Health Screening, JOURNAL OF RADIATION PROTECTION, 39(3), 142-149, 2014 https://doi.org/10.14407/jrp.2014.39.3.142
  2. The Health Insurance Review and Assessment Service. Statistics annual report 2014, Accessed February. 9. 2016 http://www.hira.or.kr/dummy.do?pgmid=HIRAA020045010000&cmsurl=/cms/medi_info/07/03/01/1337460_27398.html&subject=2014%eb%85%84+%ea%b1%b4%ea%b0%95%eb%b3%b4%ed%97%98%ed%86%b5%ea%b3%84%ec%97%b0%eb%b3%b4#none
  3. ICRP publication 103: Recommendations of the International Commission on Radiological Protection, The International Commission on Radiological Protection, Ann ICRP 37(2-4), 1-332, 2007 https://doi.org/10.1016/j.icrp.2007.11.001
  4. ICRP Publication 105: Radiation protection in medicine, The International Commission on Radiological Protection, Ann ICRP 37(6), 1-64, 2007
  5. Thomas L. Slovis: Children, computed tomography radiation dose, and the As Low As Reasonably Achievable (ALARA) concept, Pediatrics 112(4) October 1, 971-972, 2003 https://doi.org/10.1542/peds.112.4.971
  6. Strauss, Keith J., and Sue C. Kaste: The ALARA (As Low As Reasonably Achievable) Concept in Pediatric Interventional and Fluoroscopic Imaging: Striving to Keep Radiation Doses as Low as Possible during Fluoroscopy of Pediatric Patients-A White Paper Executive Summary 1, Radiology 240(3), 621-622, 2006 https://doi.org/10.1148/radiol.2403060698
  7. Brody, A. S., Frush, D. P., Huda, W., & Brent, R. L.: Radiation risk to children from computed tomography, Pediatrics 120(3), 677-682, 2007 https://doi.org/10.1542/peds.2007-1910
  8. Yong-Su Yoon, Jung-Min Kim, Hyun-Ji Kim et. al.: Report for Spreading Culture of Medical Radiation Safety in Korea : Mainly the Activities of the Korean Alliance for Radiation Safety and Culture in Medicine(KARSM), Journal of Korean Society of radiological technology, 36(3), 193-200, 2013.
  9. Cynthia H. McCollough, Diagnostic Reference Levels, Accessed March. 3. http://www.imagewisely.org/Imaging-Modalities/Computed-Tomography/Medical-Physicists/Articles/Diagnostic-Reference-Levels?referrer=search
  10. Tessa S. Cook, Stefan L. Zimmerman, Scott R. Steingall, Andrew D. A. Maidment, Woojin Kim, William W. Boonn,: RADIANCE: An Automated, Enterprisewide Solution for Archiving and Reporting CT Radiation Dose Estimates, Radiographics 31(7) 1833-1846, 2011 https://doi.org/10.1148/rg.317115048
  11. ICRP publication 93: Managing Patient Dose in Digital Radiology, The International Commission on Radiological Protection, Ann. ICRP 34 (1), 2004
  12. Ministry of food and drug safety. Research for national medical radiation exposure reduction infrastructure report. 2012.