DOI QR코드

DOI QR Code

java Based Magnetic Resonance User Interface의 Advanced Method for Accurate, Robust, and Efficient Spectral Fitting 분석방법의 관찰자 변동 요소

Observer Variation Factor on Advanced Method for Accurate, Robust, and Efficient Spectral Fitting of java Based Magnetic Resonance User Interface for MRS data analysis

  • Lee, Suk-Jun (Department of Biomedical Laboratory Science, College of Health Science, Cheongju University) ;
  • Yu, Seung-Man (Department of Radiological Science, College of Health Science, Gimcheon University)
  • 투고 : 2016.02.18
  • 심사 : 2016.06.07
  • 발행 : 2016.06.30

초록

본 연구에서는 MRS 정량적 분석 중 jMRUI AMARES방법의 관찰자의 의존적 원인 요소를 숙련자와 비숙련자의 측정을 통하여 파악하고 하였다. 실험용 10주령 수컷 쥐의 간 부분을 3T MRI 장치를 활용하여 point resolved spectroscopy 펄스시퀀스를 이용하여 자기공명분광 데이터를 획득하였다. 획득된 데이터는 기준 값으로 사용하기 위해서 LCModel software 이용하여 1.3 ppm의 메틸렌 양성자와 4.7 ppm의 물 분자 양성자의 정량 비를 계산하였다. 7명의 비숙련 관찰자는 jMRUI AMARES 방법으로 총 지질을 1, 2주 간격으로 측정한 후 측정된 값을 SPSS를 이용하여 interclass correlation coefficient를 시행하였다. 관찰자 사이 간 측정치의 일관성의 신뢰도 분석을 표현한 크논바 알파 계수는 0.1 미만으로 나타났다. 1주차 데이터 값과 2주차 데이터 값의 평균값은 $0.096{\pm}0.038$로 LCModel의 분석 값보다 0.048로 50% 높게 관찰되었다. jMRUI AMARES분석 방법이 LCModel과 동일한 결과를 얻기 위해서는 정확한 대사물질의 개요를 숙지하고 획득된 그래프의 형태를 잘 파악하여 잔존 대사물질를 최소화 하여야 한다.

The purpose of this study was examined the measurement error factor on AMARES of jMRUI method for magnetic resonance spectroscopy (MRS) quantitative analysis by skilled and unskilled observer method and identified the reason of independent observers. The Point-resolved spectroscopy sequence was used to acquired magnetic resonance spectroscopy data of 10 weeks male Sprague-Dawley rat liver. The methylene protons ($(-CH_{2-})n$) of 1.3 ppm and water proton ($H_2O$) of 4.7 ppm ratio was calculated by LCModel software for using the reference data. The seven unskilled observers were calculated total lipid (methylene/water) using the jMRUI AMARES technique twice every 1 week, and we conducted interclass correlation coefficient (ICC) statistical analysis by SPSS software. The inter-observer reliability (ICC) of Cronbach's alpha value was less than 0.1. The average value of seven observer's total lipid ($0.096{\pm}0.038$) was 50% higher than LCModel reference value. The jMRUI AMARES analysis method is need to minimize the presence of the residual metabolite by identified metabolite MRS profile in order to obtain the same results as the LCModel.

키워드

참고문헌

  1. Bloembergen N, Purcell EM, Pound RV: Relaxation Effects in Nuclear Magnetic Resonance Absorption, physical review. 73(7), 679, 1948 https://doi.org/10.1103/PhysRev.73.679
  2. Szczepaniak LS, Nurenberg P, Leonard D, et al: Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population, American Journal of Physiology. 288(2), E462-E468, 2005
  3. Bloch F: Nuclear induction, physical review. 70(7-8), 460, 1946 https://doi.org/10.1103/PhysRev.70.460
  4. Damadian R: Tumor detection by nuclear magnetic resonace. Science. 171(3976), 1151-1153, 1971 https://doi.org/10.1126/science.171.3976.1151
  5. Kreis R, Ernst T, Ross BD: Development of the human brain: In vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy, Magnetic Resonance in Medicine. 30(4), 424-437, 1993 https://doi.org/10.1002/mrm.1910300405
  6. Oberhaensli R, Bore P, Rampling R, et al: Biochemical investigation of human tumours in vivo with phosphorus-31 magnetic resonace spectroscopy, The Lancet. 328(8497), 8-11, 1986 https://doi.org/10.1016/S0140-6736(86)92558-4
  7. Yu SM, Ki SH, Baek HM: Nonalcoholic fatty liver diasease: correlation of the liver parenchyma fatty acid with intravoxel incoherent motion MR imaging-An experimental study in a rat model, Plos One. 10(10), e0139874, 2015 https://doi.org/10.1371/journal.pone.0139874
  8. Choe BY: Magnetic resonace spectroscopy, J Korean Soc Magn Reson Med. 1(1), 1-31, 1997
  9. Provencher SW: Automatic quantitation of localized in vivo 1H spectra with LCModel, NMR In Biomedicine. 14(4), 260-264, 2001 https://doi.org/10.1002/nbm.698
  10. Stefan D, Cesare FD, Andresescu A, et al: Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package, Measurement Science and Technology. 20(10), 104035, 2009 https://doi.org/10.1088/0957-0233/20/10/104035
  11. Cheung JS, Guo H, Leung JCK, et al:MRI visualization of rodent liver structure and peritoneal adhesion with dialyzate enhancement, Magnetic Resonance in Medicine. 59(5), 1170-1174, 2008 https://doi.org/10.1002/mrm.21506
  12. Corbin IR, Furth EE, Pickup S, et al: In vivo assessment of hepatic triglycerides in murine non-alco----holic fatty liver disease using magnetic resonance spectroscopy, Biochimica Biophysica Acta. 1791, 757-763, 2009 https://doi.org/10.1016/j.bbalip.2009.02.014
  13. Runge JH, Bakker PJ, Gaemers IC, et al: Quantitative determination of liver triglyceride levels with 3T $^1$H-MR spectroscopy in mice with moderately elevated liver fat content, Academic Radiology. 21(11), 1446-1454, 2014 https://doi.org/10.1016/j.acra.2014.06.009
  14. Melissa Terpstra, Pierre-Gilles Henry, Rolf Gruetter et al: Measurement of reduced glutathione (GSH) in human brain using LCModel analysis of difference-edited spectra, Magnetic Resonance in Medicine. 50(1), 19-23, 2003 https://doi.org/10.1002/mrm.10499
  15. Srinivasan R, Vigneron D, Sailasuta N, et al: A comparative study of myo-inositol quantification using lcmodel at 1.5 T and 3.0 T with 3D 1H proton spectroscopic imaging of the human brain, Magnetic Resonance Imaging. 22(4), 523-528, 2004 https://doi.org/10.1016/j.mri.2004.01.028
  16. Tefan D, Cesare FD, Andrasescu A, et al: Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol. 20, 104035, 2009 https://doi.org/10.1088/0957-0233/20/10/104035