DOI QR코드

DOI QR Code

TiAl-Nb 합금의 고온상변태와 일방향응고에 관한 연구

Study on High Temperature Phase Transformation and Directional Solidification of TiAl-Nb Alloy

  • 박종문 (금오공과대학교 신소재공학과) ;
  • 장호승 (금오공과대학교 신소재공학과) ;
  • 김성웅 (재료연구소 타이타늄연구실) ;
  • 김승언 (재료연구소 타이타늄연구실) ;
  • 손지하 (포항금속소재산업진흥원 첨단기술팀) ;
  • 오명훈 (금오공과대학교 신소재공학과)
  • Park, Jong-Moon (School of Materials Science and Engineering, Kumoh National Institute of Technology (KIT)) ;
  • Jang, Ho-Seung (School of Materials Science and Engineering, Kumoh National Institute of Technology (KIT)) ;
  • Kim, Seong-Woong (Titanium department, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Seung-Eon (Titanium department, Korea Institute of Materials Science (KIMS)) ;
  • Shon, Je-Ha (Advanced Technology Team, Pohang Institute of Metal Industry Advancemnet (POMIA)) ;
  • Oh, Myung-Hoon (School of Materials Science and Engineering, Kumoh National Institute of Technology (KIT))
  • 투고 : 2016.08.12
  • 심사 : 2016.09.09
  • 발행 : 2016.09.30

초록

Phase transformation phenomenon at high temperature was investigated by using designed TiAl-Nb alloys with addition of the ${\beta}$ stabilizer. Examination of dendritic morphologies in arc-melted button ingot could reveal the crystallography of the primary solidification phase. It was found that the addition of ${\beta}$ stabilizer(Nb) shifted the high temperature region of the binary Ti-Al phase diagram to the high Al composition side so that ${\beta}$ phase forms as a primary crystal even at higher Al composition compared with the binary Ti-Al system. The ${\beta}$ was found to be the primary solidification phase for alloys with Al content less than about 52 at.%. The composition of ${\beta}$ solidification in Ti-Al-Nb ternary system could be determined from the partial liquidus projection which was constructed by observing the microstructure of arc-melted buttons. The Ti-46Al-(6, 8)Nb composition was selected for ${\beta}$ solidification and the directional solidification was performed by a floating zone-type DS apparatus at the growth rate 30 mm/hr respectively.

키워드

참고문헌

  1. T. Noda : Intermetallics, 6 (1998) 709. https://doi.org/10.1016/S0966-9795(98)00060-0
  2. Y. W. Kim : JOM, 46 (1994) 30.
  3. H. Inui, M. H. Oh, A. Nakamura and M. Yamaguchi : Acta Metal. Mater., 40 (1992) 3095. https://doi.org/10.1016/0956-7151(92)90472-Q
  4. M. C. Kim, D. M. Wee, M. H. Oh, J. H. Lee, H. Inui and M. Yamaguchi : Mater. Sci. Eng. A, A239/240 (1997) 570.
  5. I. S. Jung, M. C. Kim, J. H. Lee, M. H. Oh and D. M. Wee : Intermetallics, 7 (1999) 1247. https://doi.org/10.1016/S0966-9795(99)00031-X
  6. H. N. Lee, M. H. Oh, D. R. Johson, H. Inui, M. Yamaguchi and D. M. Wee : J. Kor. Inst. Met. & Mater., 37 (1999) 1343.
  7. D. R. Johnson, Y. Masuda, H. Inui and M. Tamaguchi : Acta Materialia, 45 (1996) 2523.
  8. I. S. Jung, H. S. Jang. M. H. Oh and D. M. Wee : J. Kor. Inst. Met & Mater., 38 (2000) 1047.
  9. H. S. Jang, I. S. Jung, M. H. Oh and D. M. Wee : J. Kor. Inst. Met & Mater., 38 (2000) 1042.
  10. S. Saka, M. Thomas, C. Sanchez and T. Khan : Structural Intermetallics, M. V. Nathal et al. (Ed.), TMS, Warrendale, Pa (1997) 313.
  11. H. R. Jiang, Z. L. Wang, W. S. Ma, X. R. Feng, Z. Q. Dong, L. Zhang and Y. Liu : Trans. Nonferrous Met. Soc. China, 18 (2008) 512. https://doi.org/10.1016/S1003-6326(08)60090-4
  12. D. R. Johnson, H. Inui, S. Muto, Y. Omiya and T. Tamanak : Acta Materialia 54 (2006) 1077. https://doi.org/10.1016/j.actamat.2005.10.040
  13. Y. W. Kim, W. Smarsly, J. Lin, D. Dimiduk and F. Appel : Gamma titanium aluminide alloys, Wiley, (2014) 4.
  14. G. E. Bean, M. S. Kesler and M. V. Manuel : Journal of Alloys and Comounds 613 (2014) 351. https://doi.org/10.1016/j.jallcom.2014.05.092
  15. J. Li, Y. Liu, Y. Wang, P. Cao, C. Zhou, C. Xiang and Y. He : Intermetallics 52 (2014) 49. https://doi.org/10.1016/j.intermet.2014.03.013