DOI QR코드

DOI QR Code

The Geometry of the Space of Symmetric Bilinear Forms on ℝ2 with Octagonal Norm

  • Kim, Sung Guen (Department of Mathematics, Kyungpook National University)
  • Received : 2014.07.11
  • Accepted : 2014.12.01
  • Published : 2016.09.23

Abstract

Let $d_*(1,w)^2 ={\mathbb{R}}^2$ with the octagonal norm of weight w. It is the two dimensional real predual of Lorentz sequence space. In this paper we classify the smooth points of the unit ball of the space of symmetric bilinear forms on $d_*(1,w)^2$. We also show that the unit sphere of the space of symmetric bilinear forms on $d_*(1,w)^2$ is the disjoint union of the sets of smooth points, extreme points and the set A as follows: $$S_{{\mathcal{L}}_s(^2d_*(1,w)^2)}=smB_{{\mathcal{L}}_s(^2d_*(1,w)^2)}{\bigcup}extB_{{\mathcal{L}}_s(^2d_*(1,w)^2)}{\bigcup}A$$, where the set A consists of $ax_1x_2+by_1y_2+c(x_1y_2+x_2y_1)$ with (a = b = 0, $c={\pm}{\frac{1}{1+w^2}}$), ($a{\neq}b$, $ab{\geq}0$, c = 0), (a = b, 0 < ac, 0 < ${\mid}c{\mid}$ < ${\mid}a{\mid}$), ($a{\neq}{\mid}c{\mid}$, a = -b, 0 < ac, 0 < ${\mid}c{\mid}$), ($a={\frac{1-w}{1+w}}$, b = 0, $c={\frac{1}{1+w}}$), ($a={\frac{1+w+w(w^2-3)c}{1+w^2}}$, $b={\frac{w-1+(1-3w^2)c}{w(1+w^2)}}$, ${\frac{1}{2+2w}}$ < c < ${\frac{1}{(1+w)^2(1-w)}}$, $c{\neq}{\frac{1}{1+2w-w^2}}$), ($a={\frac{1+w(1+w)c}{1+w}}$, $b={\frac{-1+(1+w)c}{w(1+w)}}$, 0 < c < $\frac{1}{2+2w}$) or ($a={\frac{1=w(1+w)c}{1+w}}$, $b={\frac{1-(1+w)c}{1+w}}$, $\frac{1}{1+w}$ < c < $\frac{1}{(1+w)^2(1-w)}$).

Keywords

References

  1. Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on $l_1$, J. Math. Anal. Appl., 228(1998), 467-482. https://doi.org/10.1006/jmaa.1998.6161
  2. Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc., 54(2)(1996), 135-147. https://doi.org/10.1112/jlms/54.1.135
  3. Y. S. Choi and S. G. Kim, The unit ball of $P(^2l^2_2)$, Arch. Math. (Basel), 71(1998), 472-480. https://doi.org/10.1007/s000130050292
  4. Y. S. Choi and S. G. Kim, Extreme polynomials on $c_0$, Indian J. Pure Appl. Math., 29(1998), 983-989.
  5. Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space$ P(^2l_1)$, Results Math., 36(1999), 26-33. https://doi.org/10.1007/BF03322099
  6. Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces $P(^2l^2_p)$ (p=1, 2,$\infty$), Indian J. Pure Appl. Math., 35(2004), 37-41.
  7. S. Dineen, Complex Analysis on In nite Dimensional Spaces, Springer-Verlag, London (1999).
  8. B. C. Grecu, Geometry of 2-homogeneous polynomials on $l_p$ spaces, 1 < p < $\infty$, J. Math. Anal. Appl., 273(2002), 262-282. https://doi.org/10.1016/S0022-247X(02)00217-2
  9. S. G. Kim, Exposed 2-homogeneous polynomials on $P(^2l^2_p)$ ($1{\leq}p{\leq}1$), Math. Proc. Royal Irish Acad., 107A(2007), 123-129.
  10. S. G. Kim, The unit ball of $L_s(^2l^2_{\infty})$, Extracta Math., 24(2009), 17-29.
  11. S. G. Kim, The unit ball of $P(^2d_{*}(1, w)^2)$ Math. Proc. Royal Irish Acad., 111A(2)(2011), 79-94.
  12. S. G. Kim, The unit ball of $L_s(^2d_{*}(1, w)^2)$, Kyungpook Math. J., 53(2013), 295-306.
  13. S. G. Kim, Extreme bilinear forms in $L(^2d_{*}(1, w)^2)$, Kyungpook Math. J., 53(2013), 625-638. https://doi.org/10.5666/KMJ.2013.53.4.625
  14. S. G. Kim, Smooth polynomials of $P(^2d_{*}(1, w)^2)$, Math. Proc. Royal Irish Acad., 113A(1)(2013), 45-58.
  15. S. G. Kim, Exposed symmetric bilinear forms of $L_s(^2d_{*}(1, w)^2)$, Kyungpook Math. J., 54(2014), 341-347. https://doi.org/10.5666/KMJ.2014.54.3.341
  16. S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131(2003), 449-453. https://doi.org/10.1090/S0002-9939-02-06544-9
  17. G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of ho- mogeneous polynomials on non symmetric convex bodies, Math. Scand., 105(2009), 147-160. https://doi.org/10.7146/math.scand.a-15111
  18. G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340(2008), 1069-1087. https://doi.org/10.1016/j.jmaa.2007.09.010
  19. R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl., 221(1998), 698-711. https://doi.org/10.1006/jmaa.1998.5942