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Abstract. We prove a uniqueness theorem of entire functions sharing an entire function

of smaller order with their linear differential polynomials. The results in this paper im-

prove the corresponding results given by Gundersen-Yang[4], Chang-Zhu[3], and others.

Some examples are provided to show that the results in this paper are best possible.

1. Introduction and main results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations in Nevanlinna
theory of meromorphic functions as explained, e.g., in [5], [7] and [11]. It will be
convenient to let E denote any set of positive real numbers of finite linear measure,
not necessarily the same at each occurrence. For a nonconstant meromorphic func-
tion h, we denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any
quantity satisfying S(r, h) = o{T (r, h)} (r →∞, r 6∈ E).

Let f and g be two nonconstant meromorphic functions, and let a be a finite
value. We say that f and g share the value a CM, provided that f−a and g−a have

* Corresponding Author.
Received December 29, 2011; accepted March 21, 2014.
2010 Mathematics Subject Classification: 30D35, 30D30.
Key words and phrases: Entire functions, Shared values, Order of growth, Differential
polynomials, Uniqueness theorems.
This work is supported in part by the NSFC (No.11171184), the NSFC (No.11461042) and
the NSF of Shandong Province, China (No. ZR2014AM011).

763



764 Xiao-Min Li and Hong-Xun Yi

the same zeros with the same multiplicities. Similarly, we say that f and g share a
IM, provided that f − a and g − a have the same zeros ignoring multiplicities. In
addition, we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and we say
that f and g share ∞ IM, if 1/f and 1/g share 0 IM (see[12]). We say that a is a
small function of f, if a is a meromorphic function satisfying T (r, a) = S(r, f) (see
[12]). In this paper, we also need the following definition.

Definition 1.1. For a nonconstant entire function f, the order σ(f), lower order
µ(f) and hyper-order σ2(f) are defined as

σ(f) = lim sup
r→∞

logT (r, f)

logr
= lim sup

r→∞

loglogM(r, f)

logr
,

µ(f) = lim inf
r→∞

logT (r, f)

logr
= lim inf

r→∞

loglogM(r, f)

logr

and

σ2(f) = lim sup
r→∞

loglogT (r, f)

logr
= lim sup

r→∞

logloglogM(r, f)

logr
,

where and what follows, M(r, f) = max
|z|=r
{|f(z)|}.

In 1977, Rubel-Yang [8] proved that if an entire function f shares two distinct
finite complex numbers CM with its derivative f ′, then f = f ′. How is the relation
between f and f ′, if an entire function f shares one finite complex number a CM
with its derivative f ′ ? In 1996, Brück [2] made a conjecture that if f is a noncon-
stant entire function satisfying σ2(f) <∞, where σ2(f) <∞ is the hyper-order of
f such that σ2(f) is not a positive integer, and if f and f ′ share one finite complex
number a CM, then f − a = c(f ′ − a) for some constant c 6= 0. For the case that
a = 0, the above conjecture had been proved by Brück [2]. Brück [2] also proved
that the above conjecture is true, provided that a 6= 0 and N(r, 1/f ′) = S(r, f)
without any growth restriction. In 2005, Al-Khaladi [1] showed that the conjecture
remains true for meromorphic functions f such that N(r, 1/f ′) = S(r, f). But the
conjecture is still an open question by now. In this direction, we recall the following
result proved by Gundersen-Yang [4], which shows that the above conjecture is true
for a 6= 0, provided that f satisfies the additional assumption σ(f) <∞:

Theorem A ([4], Theorem 1) Let f be a nonconstant entire function of finite
order, and let a 6= 0 be a finite complex number. If f and f ′ share a CM, then
f ′ − a = c(f − a), for some nonzero constant c.

Later on, Chang-Zhu [3] proved the following result to improve Theorem A:

Theorem B ([3], Theorem 1) Let f be an entire function such that σ(f) <∞, and
let a 6≡ 0 be an entire function such that σ(a) < σ(f). If f − a and f ′ − a share 0
CM, then f ′ − a = c(f − a) for some nonzero constant c.

Consider the following linear differential polynomial related to f

(1.1) L[f ] = f (k) + ak−1f
(k−1) + · · ·+ a1f

′ + a0f,
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where and what follows, k is a positive integer and a0, a1, · · · ak−1 are complex
numbers.

We will prove the following result to improve Theorems A and B:

Theorem 1.2. Let f be a nonconstant entire function such that σ(f) < ∞, and
let a 6≡ 0 be an entire function such that σ(a) < σ(f). If f − a and L[f ]− a share 0
CM, where L[f ] is defined as in (1.1), then σ(f) = 1 and one of the following two
cases will occur:

(i) L[f ]− a = c(f − a), where c is some nonzero constant

(ii) f is a solution of the equation L[f ] − a = (f − a)ep1z+p0 such that σ(f) =
µ(f) = 1, where not all a0, a1, · · · , ak−1 are zeros, p1 6= 0 and p0 are complex
numbers.

From Theorem 1.2 we get the following corollary:

Corollary 1.3. Let f be a nonconstant entire function such that σ(f) < ∞, and
let a 6≡ 0 be an entire function such that σ(a) < σ(f). If f − a and f (k) − a share 0
CM, where k is a positive integer, then f is a solution of f (k) − a = c(f − a) such
that σ(f) = 1, where c is some nonzero constant.

Proceeding as in the proof of Theorem 1.2 in Section 3 of this paper, we get the
following theorem:
Theorem 1.4. Let f be a nonconstant entire function such that σ(f) <∞, and let
a 6≡ 0 be an entire function such that σ(a) < µ(f). If f−a and L[f ]−a share 0 CM,
where L[f ] is defined as in (1.1), then σ(f) = µ(f) = 1 and one of the conclusions
(i)-(ii) of Theorem 1.2 still holds.

From Theorem 1.4 we get the following corollary:

Corollary 1.5. Let f be a nonconstant entire function such that σ(f) < ∞, and
let a 6≡ 0 be an entire function such that σ(a) < µ(f). If f − a and f (k) − a share 0
CM, where k is a positive integer, then f is a solution of f (k) − a = c(f − a) such
that σ(f) = µ(f) = 1, where c is some nonzero constant.

Example 1.6. Let f = 1 − 2ez and L[f ] = f ′ − f. Then µ(f) = σ(f) = 1 and
L[f ](z)−1 = (f(z)−1)·e−z. This example shows that the conclusion (ii) of Theorem
1.2 may occur.

Example 1.7.([3]) Let f(z) = e2z − (z − 1)ez and a(z) = e2z − zez. Then f − a
and f ′ − a share 0 CM and µ(f) = σ(f) = σ(a) = µ(f) = 1, but f ′(z) − a(z) =
(f(z)− a(z))ez. This example shows that the condition “σ(a) < σ(f)” in Corollary
1.3 and the condition “σ(a) < µ(f)” in Corollary 1.5 are best possible.

In 1995, Yi-Yang[12] posed the following question:

Question 1.8. ([12], p.398) Let f be a nonconstant meromorphic function, and let
a be a finite nonzero complex constant. If f, f (n) and f (m) share the value a CM,
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where n and m (n < m) are distinct positive integers not all even or odd, then can
we get the result f = f (n)?

Regarding Question 1.8, Gundersen-Yang [4] proved the following result:

Theorem E ([4], Theorem 2) Let f be a nonconstant entire function of finite order,
let a 6= 0 be a finite complex number, and let n be a positive integer. If a is shared
by f, f (n) and f (n+1) IM, and shared by f (n) and f (n+1) CM, then f = f ′.

We will prove the following result to improve and complement Theorem E:

Theorem 1.9. Let f and a be two nonconstant entire functions such that σ(a) <
σ(f) < ∞. If f − a, f ′ − a and L[f ] − a share 0 CM, where L[f ] is defined as in
(1.1), then one of the following four cases will occur:

(i) f(z) = γ1e
z, where γ1 6= 0 is a constant.

(ii) f(z) = γ2e
cz − [a(1− c)]/c, where n ≥ 2, γ2 6= 0 is a constant.

(iii) L[f ] = f ′ and f ′ − a = c(f − a), where c is some nonzero constant.

(iv) f(z) = γ3e
cz, where γ3 and c are two nonzero constants.

2. Preliminaries

In this section, we introduce some important results that will be used to prove
the main results in this paper. First of all we introduce Wiman-Valiron theory.

For this purpose, we first introduce the following notions: Let f(z) =
∞∑
n=0

anz
n be

an entire function. Next we define by µ(r) = max{|an|rn : n = 0, 1, 2, · · · } the
maximum term of f, and define by ν(r, f) = max{m : µ(r) = |am|rm} the central
index of f, see, e.g., the reference [7, p.50].

Lemma 2.1. ([7], Corollary 2.3.4) Let f be a transcendental meromorphic function
and k be a positive integer. Then m(r, f (k)/f) = O{log(rT (r, f)}, outside of a
possible exceptional set E of finite linear measure, and if f is of finite order of
growth, then m(r, f (k)/f) = O(log r).

Lemma 2.2. ([6], Satz 4.5) Let f be an entire function of infinite order, with

the lower order µ(f) and order σ(f). Then µ(f) = lim inf
r→∞

log ν(r,f)
log r and σ(f) =

lim sup
r→∞

log ν(r,f)
log r .

Lemma 2.3. (see [7], Lemma 1.1.2) Let g : (0,+∞) −→ R, h : (0,+∞) −→ R be
monotone increasing functions such that g(r) ≤ h(r) outside of an exceptional set
F of finite logarithmic measure. Then, for any α > 1, there exists r0 > 0 such that
g(r) ≤ h(rα) for all r > r0.

Lemma 2.4. ([6], Satz 4.4) Let f(z) =
∞∑
n=0

anz
n be an entire function, let µ(r, f)

be the maximum term of f , and let ν(r, f) be the central index. Then for 0 < r < R
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we have

M(r, f) < µ(r, f)

{
ν(R, f) +

R

R− r

}
.

Lemma 2.5. ([9]) Let f be a meromorphic function and k a positive integer. If f
is a solution of the differential equation a0f

(k) + a1f
(k−1) + · · · + akf = 0, where

a0, a1, · · · , ak are complex numbers with a0 6= 0, then T (r, f) = O(r). Moreover, if
f is transcendental, then r = O{T (r, f)}.

Lemma 2.6. ([7], Remark of Corollary 2.3.5 or [12], Corollary of Theorem 1.21)
Let f be a transcendental meromorphic function, and let n be a positive integer,
then σ(f) = σ(f (n)).

Lemma 2.7. ([10], Theorem 1.1) Let f be a nonconstant entire function, let a be
a nonzero small function relative to f, and let k ≥ 2 be a positive integer. If f − a,
f ′ − a and L[f ] − a share 0 CM, where L[f ] is defined as in (1.1), and if f ′ 6≡ f,

then a reduces to a constant and a0 +ck−1 +
k−1∑
j=1

ajc
j−1 = 1 for some constant c 6= 0

such that f = γecz − a(1− c)/c, where γ is a nonzero constant.

3. Proof of Theorems

Proof of Theorem 1.2. From the condition that f − a and L[f ]− a share 0 CM
we get

(3.1)
L[f ]− a
f − a

= eQ,

where Q is an entire function. From the condition σ(a) < σ(f) we know that
σ(f) > 0, which implies that f is a transcendental entire function. From (3.1),
Lemma 2.1 and the condition σ(a) < σ(f) <∞, we get

(3.2) T (r, eQ) ≤ 2T (r, f) +O(log r),

as r −→ ∞. From (3.2) and Definition 1.1 we get σ(eQ) < ∞, which implies that
Q is a polynomial. We discuss the following two cases.

Case 1. Suppose that

(3.3) lim inf
r−→∞

logν(r, f)

logr
> 1.

Then from (3.3) and Lemma 2.2 we get

(3.4) µ(f) = lim inf
r−→∞

log ν(r, f)

log r
> 1.
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From the condition that f is a nonconstant entire function, we have

(3.5) M(r, f) −→∞,

as r −→∞. Let

(3.6) M(r, f) = |f(zr)|,

where zr = reiθ(r), and θ(r) ∈ [0, 2π). From (3.6) and the Wiman-Valiron theory
(see [7], Theorem 3.2), we see that there exist subsets Fj ⊂ (1,∞) (1 ≤ j ≤ n)
with finite logarithmic measure, i.e.,

∫
Fj

dt
t < ∞, such that for some point zr =

reiθ(r) (θ(r) ∈ [0, 2π)) satisfying |zr| = r 6∈ Fj and M(r, f) = |f(zr)|, we have

(3.7)
f (j)(zr)

f(zr)
=

(
ν(r, f)

zr

)j
{1 + o(1)} (1 ≤ j ≤ n),

as r 6∈ ∪nj=1Fj and r −→ ∞. By Definition 1.1, Lemma 2.3, Definition 1.1.1 and
Theorem 1.1.3 from [13], and the assumtion σ(a) < σ(f) we know that there exists
an infinite sequence of points zrn = rne

iθ(rn) satisfying M(rn, f) = |f(zrn)|, where
rn ∈ I \∪nj=1Fj , I ⊆ R+ is a subset with logarithmic measure

∫
I
dt
t =∞, such that

(3.8) lim
rn→∞

log logM(rn, f)

log rn
= σ(f)

and

(3.9) lim
rn→∞

M(rn, a)

M(rn, f)
= 0.

Since

(3.10)
L[f ](z)− a(z)

f(z)− a(z)
=

L[f ](z)
f(z) −

a(z)
f(z)

1− a(z)
f(z)

,

from (1.1), (3.3), (3.5)-(3.10) we get

(3.11)
L[f ](zrn)− a(zrn)

f(zrn)− a(zrn)
=

(
ν(rn, f)

zrn

)k
{1 + o(1)} ,

as rn −→ +∞. From (3.11) we have

(3.12) log

∣∣∣∣L[f ](zrn)− a(zrn)

f(zrn)− a(zrn)

∣∣∣∣ = k{log ν(rn, f)− log rn}+ o(1),

as rn −→ +∞. Let

(3.13) Q = pmz
m + pm−1z

m−1 + · · ·+ p1z + p0,
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where p0, p1, · · · , pm−1, pm are complex numbers with pm 6= 0. It follows from
(3.13) that lim

|z|→∞
|Q(z)|/|pmzm| = 1 and |Q(z)|/|pmzm| > 1/e, as |z| > r0, where

r0 is a sufficiently large positive number. Combining this with (1.1), we get
(3.14)

m log |z|+ log |pm| − 1 ≤ log |Q| = log | log eQ| ≤ | log log eQ| =
∣∣∣∣log log

L[f ]− a
f − a

∣∣∣∣ ,
as |z| −→ +∞. From (3.12), (3.14), Lemma 2.2 and the condition σ(f) <∞ we get

m log |zrn |+ log |pm| − 1

≤
∣∣∣∣log log

L[f ](zrn)− a(zrn)

f(zrn)− a(zrn)

∣∣∣∣
=

∣∣∣∣log

∣∣∣∣log
L[f ](zrn)− a(zrn)

f(zrn)− a(zrn)

∣∣∣∣+ i arg

(
log

L[f ](zrn)− a(zrn
f(zrn)− a(zrn)

)∣∣∣∣
≤

∣∣∣∣log

∣∣∣∣log
L[f ](zrn)− a(zrn)

f(zrn)− a(zrn)

∣∣∣∣∣∣∣∣+ 2π

≤ log log ν(rn, f) + log log rn +O(1) ≤ 2 log log rn +O(1),

i.e.,
(3.15)
m log |zrn |+ log |pm| − 1 ≤ log log ν(rn, f) + log log rn +O(1) ≤ 2 log log rn +O(1),

as rn −→ +∞. This is impossible. Thus Q is a constant, and so (3.11) is rewritten
as

(3.16)

(
ν(rn, f)

zrn

)k
{1 + o(1)} = c,

as rn −→ +∞, where c is some nonzero constant. From (3.16) we get

(3.17) lim
rn→∞

log ν(rn, f)

log rn
= 1.

On the other hand, by Lemma 2.4 we know that

(3.18) M(rn, f) < µ(rn){ν(2rn, f) + 2} = |aν(rn,f)|r
ν(rn,f)
n · {ν(2rn, f) + 2}.

Since |aj | < M1 for all nonnegative integers j and some constant M1 > 0, we get
from (3.18) that

(3.19) log logM(rn, f) ≤ log ν(rn, f) + log log ν(2rn, f) + log log rn + C1,

where C1 > 0 is a suitable constant. From Lemma 2.2 and the condition σ(f) <∞
we get

(3.20) log ν(2rn, f) < {1 + σ(f)}(log rn + log 2),
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as rn −→∞. From (3.17), (3.19) and (3.20) we get

(3.21) log logM(rn, f) ≤ log ν(rn, f) + 2 log log rn +O(1) ≤ log ν(rn, f){1 + o(1)},

as rn −→∞. From (3.21) we get

(3.22)
log logM(rn, f)

log rn
≤ log ν(rn, f)

log rn
.

From (3.8), (3.17) and (3.22) we get

(3.23) σ(f) ≤ 1.

From (3.4), (3.23) and the fact µ(f) ≤ σ(f) we get a contradiction.

Case 2. Suppose that

(3.24) lim inf
r−→∞

logν(r, f)

logr
≤ 1.

Then from (3.24) and Lemma 2.2 we get

(3.25) µ(f) ≤ 1.

We discuss the following two subcases.

Subcase 2.1. Suppose that

(3.26) σ(f) > 1.

By (3.26), Definition 1.1, Lemma 2.3, Definition 1.1.1 and Theorem 1.1.3 from [13]
and the assumption σ(a) < σ(f) we know that there exists an infinite sequence
of points zrn = rne

iθ(rn) satisfying M(rn, f) = |f(zrn)|, where rn ∈ I \ ∪nj=1Fj ,

I ⊆ R+ is a subset with logarithmic measure
∫
I
dt
t = ∞, such that (3.8) and (3.9)

hold. Next in the same manner as in Case 1 we prove that Q is a constant such
that (3.16) holds. Proceeding as in Case 1 we get (3.21)-(3.23). From (3.23) and
(3.26) we get a contradiction.

Subcase 2.2. Suppose that

(3.27) σ(f) ≤ 1.

we will prove

(3.28) σ(f) ≥ 1.

Suppose that

(3.29) σ(f) < 1.
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Then from (3.2), (3.29), Definition 1.1 and the condition σ(a) < σ(f) we get σ(eQ) ≤
σ(f) < 1, which implies that Q, and so eQ is a constant. Thus (3.1) is rewritten as

(3.30)
L[f ]− a
f − a

= c,

where c is some nonzero constant. From (1.1), Lemma 2.3, Definition 1.1.1 and
Theorem 1.1.3 from [13], and the assumption σ(a) < σ(f) we know that there
exists an infinite sequence of points zrn = rne

iθ(rn) satisfying M(rn, f) = |f(zrn)|,
where rn ∈ I \ ∪nj=1Fj , I ⊆ R+ is a subset with logarithmic measure

∫
I
dt
t = ∞,

such that (3.8) and (3.9) hold, and such that
(3.31)(
ν(rn, f)

zrn

)k
{1+o(1)}+ak−1

(
ν(rn, f)

zrn

)k−1
{1+o(1)}+· · ·+a1

(
ν(rn, f)

zrn

)
+a0 = c,

as rn −→∞. Moreover, from Lemma 2.2 we get

(3.32) ν(rn, f) ≤ rσ(f)+ε0n ,

as rn ≥ R0, where ε0 = (1− σ(f))/2 and R0 is a sufficiently large positive number.
From (3.29) and (3.32) we get

(3.33) lim
rn−→∞

∣∣∣∣ν(rn, f)

zrn

∣∣∣∣j ≤ lim
rn→∞

r
j(σ(f)−1)

2
n = 0 (1 ≤ j ≤ k).

From (3.31) and (3.33) we get

(3.34) a0 = c.

By (1.1) and (3.34) we know that (3.30) is rewritten as

(3.35) f (k) + ak−1f
(k−1) + · · ·+ a1f

′ = (1− c)a.

If c = 1, then it follows from (3.35) that f (k) + ak−1f
(k−1) + · · · + a1f

′ = 0. This
together with Lemma 2.5 implies that σ(f) = µ(f) = 1, which contradicts (3.29).
Next we suppose that c 6= 1. By rewriting (3.35) we get

(3.36) a1 =
(1− c)a
f ′

− a2f
′′

f ′
− a3f

(3)

f ′
− · · · − ak−1f

(k−1)

f ′
− f (k)

f ′
.

By Lemma 2.6 we know that σ(f ′) = σ(f), this together with (3.29) and the
condition σ(a) < σ(f) implies

(3.37) σ(a) < σ(f ′) < 1.

From (3.37), Definition 1.1 and Lemma 2.3 Definition 1.1.1 and Theorem 1.1.3
from [13], we know that there exists an infinite sequence of points zrn = rne

iθ(rn)
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satisfying M(rn, f
′) = |f ′(zrn)|, where rn ∈ I \ ∪nj=1Fj , I ⊆ R+ is a subset with

logarithmic measure
∫
I
dt
t =∞, such that

(3.38) lim
rn→∞

log logM(rn, f
′)

log rn
= σ(f ′)

and

(3.39) lim
rn→∞

M(rn, a)

M(rn, f ′)
= 0.

From (3.36)-(3.39) we have
(3.40)

a1 =
(1− c)a(zrn)

M(rn, f ′)
−
k−1∑
j=2

aj

(
ν(rn, f

′)

zrn

)j−1
{1 + o(1)}−

(
ν(rn, f

′)

zrn

)k−1
{1 + o(1)},

as rn −→∞. From (3.37) and in the same manner as in the proof of (3.33) we get

(3.41) lim
rn→∞

∣∣∣∣ν(rn, f
′)

zrn

∣∣∣∣j = 0, 1 ≤ j ≤ k − 1.

From (3.39)-(3.41) we get

|a1| ≤ lim
rn→∞

∣∣∣∣ (1− c)a(zrn)

M(rn, f ′)

∣∣∣∣+

k−1∑
j=2

|2aj | lim
rn→∞

∣∣∣∣ν(rn, f
′)

zrn

∣∣∣∣j−1

+2 lim
rn→∞

∣∣∣∣ν(rn, f
′)

zrn

∣∣∣∣k−1 = 0,

which implies a1 = 0. Similarly we have aj = 0 for 2 ≤ j ≤ k−1. Thus (3.35) can be
rewritten as f (k) = (1−c)a. This together with Lemma 2.6 implies σ(f) = σ(f (k)) =
σ(a), which contradicts the condition σ(a) < σ(f). (3.28) is thus completely proved.
From (3.27) and (3.28) we get

(3.42) σ(f) = 1.

From (3.2), (3.42) and Definition 1.2 we get σ(eQ) ≤ 1. If Q is a constant, from (3.1)
we get the conclusion (i) of Theorem 1.1. Next we suppose that Q is a polynomial
with degree deg(Q) = 1. Then

(3.43) Q(z) = p1z + p0,

where p1 6= 0 and p0 are complex numbers. First of all, we will prove

(3.44) µ(f) = 1.
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In fact, from (3.42) and µ(f) ≤ σ(f) we get

(3.45) µ(f) ≤ 1.

Suppose that

(3.46) µ(f) < 1.

From (3.2) and Definition 1.1 we know that there exists an infinite sequence of
positive numbers rn such that

(3.47) lim
rn→∞

log T (rn, f)

log rn
= µ(f).

From (3.2) we get

(3.48) µ(eQ) ≤ lim
rn→∞

log T (rn, e
Q)

log rn
≤ lim
rn→∞

log T (rn, f)

log rn
.

From (3.46)-(3.48) we get

(3.49) µ(eQ) < 1.

Since µ(eQ) = σ(eQ) = deg(Q), from (3.43) we get µ(eQ) = 1, which contradicts
(3.49). Thus µ(f) ≥ 1, this together with (3.45) gives (3.44). Secondly we will prove
that not all a0, a1, · · · ak−2 and ak−1 are zero. Assume the contrary, i.e., suppose
that aj = 0 for 0 ≤ j ≤ k − 1. Then it follows from (1.1) and (3.43) that (3.1) can
be rewritten as

(3.50) f (k)(z)− a(z) = (f(z)− a(z))ep1z+p0 .

From Definition 1.1, Lemma 2.3 Definition 1.1.1 and Theorem 1.1.3 from [13], and
the assumption σ(a) < σ(f) we know that there exists an infinite sequence of points
zrn = rne

iθ(rn) satisfying M(rn, f) = |f(zrn)|, where rn ∈ I \ ∪nj=1Fj , I ⊆ R+ is a

subset with logarithmic measure
∫
I
dt
t = ∞, such that (3.8) and (3.9) hold. From

(3.8), (3.9) and (3.50) we get

(3.51)

(
ν(rn, f)

zrn

)k
{1 + o(1)} = ep1zrn+p0 ,

as rn −→∞. From (3.51) we get

|p1|rn − |p0| = |p1||zrn | − |p0| ≤ |p1zrn + p0| ≤ | log ep1zrn+p0 |+O(1)

≤ k| log ν(rn, f)− log rn|+O(1) ≤ k{σ(f) + 2} log rn +O(1),

as rn −→∞. From this and p1 6= 0 we get a contradiction. Thus from (3.42)-(3.44)
we get the conclusion (ii) of Theorem 1.2. This completes the proof of Theorem
1.1.
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Proof of Theorem 1.3. From Theorem B and the assumptions of Theorem 1.3
we know that there exists some nonzero constant c1 such that

(3.52) f ′ − a = c1(f − a),

where c1 is a nonzero constant. If c1 = 1, from (3.52) get f ′ = f, which reveals the
conclusion (i) of Theorem 1.3. Next we suppose that c1 6= 1. From Theorem 1.2 we
know that σ(f) = 1 and one of the conclusions (i) and (ii) of Theorem 1.2 will hold.
We discuss the following two cases.

Case 1. Suppose that there exists some nonzero constant c2 such that

(3.53) L[f ]− a = c2(f − a).

From (1.1), (3.52) and (3.53) we get
(3.54)
L[f ] = (ck1+ak−1c

k−1
1 +· · ·+a1c1+a0)f+(1−c1)(a(k−1)+dk−2a

(k−2)+· · ·+d1a′+d0a),

where d0, d1, · · · , dk−3, dk−2 are constants. By substituting (3.54) into (3.53) we
get

(ck1 + ak−1c
k−1
1 + · · ·+ a1c1 + a0 − c2)f

= (c1 − 1)(a(k−1) + dk−2a
(k−2) + · · ·+ d1a

′ + d0a) + (1− c2)a. (3.55)

If ck1 + ak−1c
k−1
1 + · · ·+ a1c1 + a0 − c2 6≡ 0, from (3.55) we get

(3.56) f =
(c1 − 1)(a(k−1) + dk−2a

(k−2) + · · ·+ d1a
′ + d0a) + (1− c2)a

ck1 + ak−1c
k−1
1 + · · ·+ a1c1 + a0 − c2

.

From (3.56), Lemma 2.1 and the condition σ(a) <∞ we get

(3.57) T (r, f) ≤ 2T (r, a) +O(log r).

From (3.57) and Definition 1.1 we get σ(f) ≤ σ(a), which contradicts the condition
σ(a) < σ(f). Thus ck1 +ak−1c

k−1
1 + · · ·+a1c1+a0−c2 = 0, and so (3.55) is rewritten

as

(3.58) (c1 − 1)(a(k−1) + dk−2a
(k−2) + · · ·+ d1a

′ + d0a) + (1− c2)a = 0.

Suppose that k ≥ 2. If a is a transcendental entire function, from (3.58) and Lemma
2.5 we get σ(a) = 1. Thus σ(f) = σ(a), which contradicts the condition σ(a) < σ(f).
Thus a is a nonzero polynomial, and so

(3.59) T (r, a) = o{T (r, f)}.

From (3.59) and Lemma 2.7 we get the conclusions (i)-(ii) of Theorem 1.3.

Suppose that k = 1. Then from (1.1) we get

(3.60) L[f ] = f ′ + a0f.
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From (3.52) we get f ′ = a+ c1(f − a), which and (3.60) implies

(3.61) L[f ] = (c1 + a0)f + a− ac1.

By substituting (3.61) into (3.53) we get

(3.62) (c1 + a0 − c2)f = a(c1 − c2).

If c1 + a0 − c2 6= 0, from (3.62) we get f = a(c1 − c2)/(c1 + a0 − c2), from which we
get σ(f) ≤ σ(a), which contradicts the condition σ(a) < σ(f). Thus c1+a0−c2 = 0,
and so it follows from (3.62) that c1 = c2 and a0 = 0. Thus (3.60) is rewritten as
L[f ] = f ′, which and (3.52) reveal the conclusion (iii) of Theorem 1.3.

Case 2. Suppose that

(3.63) L[f ](z)− a(z) = (f(z)− a(z)) · ep1z+p0

such that σ(f) = µ(f) = 1, where p1 (6= 0) and p0 are two finite complex numbers.

Suppose that k ≥ 2. Then from (3.59) and Lemma 2.7 we get the conclusions
(i)-(ii) of Theorem 1.3. Suppose that k = 1. Then (3.63) is rewritten as

(3.64) f ′(z) + a0f(z)− a(z) = (f(z)− a(z))ep1z+p0 .

From (3.52) and (3.64) we get

(3.65)
(c1 + a0)f(z)− c1a(z)

f(z)− a(z)
= ep1z+p0 .

If c1 + a0 = 0, then (3.65) reveals the conclusion (iv) of Theorem 1.3. Next we
suppose that

(3.66) c1 + a0 6= 0.

If a = c1a/(c1+a0), then (3.65) is rewritten as ep1z+p0 = c1+a0, which is impossible.
Next we suppose that

(3.67) a 6≡ c1a

c1 + a0
.

From (3.65) we know that f/a−1 and f/a−c1/(c1+a0) share 0 CM. From the (3.67)
and a 6≡ 0 we get c1/(c1 + a0) 6= 1. Thus by (3.67), the condition σ(a) < σ(f) <∞
and the second fundamental theorem we get

T

(
r,
f

a

)
≤ N

(
r,
f

a

)
+N

(
r,

1

f/a− 1

)
+N

(
r,

1

f/a− c1/(c1 + a0)

)
+S

(
r,
f

a

)
≤ N

(
r,

1

a

)
+O(log r) ≤ T (r, a) +O(log r),
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and so we have

(3.68) T (r, f) = T

(
r,
f

a
· a
)
≤ T

(
r,
f

a

)
+ T (r, a) ≤ 2T (r, a) +O(log r).

From (3.68) and Definition 1.1 we get σ(f) ≤ σ(a), which contradicts the condition
σ(a) < σ(f). This completes the proof of Theorem 1.3
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