KYUNGPOOK Math. J. 56(2016), 715-726
http://dx.doi.org/10.5666/KMJ.2016.56.3.715
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

On Some Modular Equations in the Spirit of Ramanujan

Belakavadi Radhakrishna Srivatsa Kumar
Department of Mathematics, Manipal Institute of Technology, Manipal University, Manipal 576104 India.
e-mail: sri_vatsabr@yahoo.com

Abstract. In this paper, we establish some new $P-Q$ type modular equations, by using the modular equations given by Srinivasa Ramanujan.

1. Introduction

In Chapter 16 of his second notebook [9], S. Ramanujan developed, theory of theta-function and his theta-function is defined by

$$
f(a, b):=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2}, \quad|a b|<1
$$

Note that, if we set $a=q^{2 i z}, b=q^{-2 i z}$, where z is complex and $\operatorname{Im}(\tau)>0$, then $f(a, b)=\vartheta_{3}(z, \tau)$, where $\vartheta_{3}(z, \tau)$ denotes one of the classical theta-functions in its standard notation [16, p. 464]. The three most important special cases of $f(a, b)$ [4, p, 36] are

$$
\begin{aligned}
\varphi(q) & :=f(q, q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}=\left(-q ; q^{2}\right)_{\infty}^{2}\left(q^{2} ; q^{2}\right)_{\infty}=\frac{(-q ;-q)_{\infty}}{(q ;-q)_{\infty}} \\
\psi(q) & :=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \\
f(-q) & :=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n(3 n-1) / 2}=(q ; q)_{\infty}
\end{aligned}
$$

After Ramanujan, we define

$$
\chi(q):=\left(-q ; q^{2}\right)_{\infty}
$$

Received May 12, 2014; revised March 18, 2016; accepted April 7, 2016.
2010 Mathematics Subject Classification: Primary 11B65, Secondary 11F27.
Key words and phrases: Theta functions, Modular equations.
where we employ the customary notation

$$
(a ; q)_{\infty}:=\prod_{n=0}^{\infty}\left(1-a q^{n}\right), \quad|q|<1
$$

We now define a modular equation as given by Ramanujan. The complete elliptic integral of the first kind $K(k)$ is defined by

$$
\begin{equation*}
K(k):=\int_{0}^{\pi / 2} \frac{d \phi}{\sqrt{1-k^{2} \operatorname{Sin}^{2} \phi}}=\frac{\pi}{2} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}}{(n!)^{2}} k^{2 n}=\frac{\pi}{2}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; k^{2}\right), \tag{1.1}
\end{equation*}
$$

where $0<k<1$. The series representation in (1.1) is found by expanding the integrand in a binomial series and integrating termwise and ${ }_{2} F_{1}$ is the ordinary or Gaussian hypergeometric function defined by

$$
{ }_{2} F_{1}(a, b ; c ; z):=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n}, \quad|z|<1
$$

with

$$
(a)_{k}=\frac{\Gamma(a+k)}{\Gamma(a)} .
$$

where a, b and c are complex numbers such that c is not a nonpositive integer. The number k is called the modulus of K and $k^{\prime}:=\sqrt{1-k^{2}}$ is called the complementary modulus. Let K, K^{\prime}, L and L^{\prime} denote the complete elliptic integrals of the first kind associated with moduli $k, k^{\prime} l$ and l^{\prime} respectively. Suppose that the equality

$$
\begin{equation*}
n \frac{K^{\prime}}{K}=\frac{L^{\prime}}{L} \tag{1.2}
\end{equation*}
$$

holds for some positive integer n. Then a modular equation of degree n is a relation between the moduli k and l which is implied by (1.2). Ramanujan recorded his modular equations in terms of α and β, where $\alpha=k^{2}$ and $\beta=l^{2}$. We often say that β has degree n over α. The multiplier m is defined by

$$
m=\frac{K}{L} .
$$

Ramanujan [4, p. 122-124] recorded several formulae for φ, ψ, f and χ at different arguments of αq and $z:={ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; \alpha\right)$ by using

$$
\varphi^{2}(q)=\frac{2}{\pi} K(k)={ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; k^{2}\right), \quad q=\exp \left(-\pi K^{\prime} / K\right) .
$$

Ramanujan's modular equations involve quotients of function $f(-q)$ at certain arguments. For example [5, p. 206], let

$$
P:=\frac{f(-q)}{q^{1 / 6} f\left(-q^{5}\right)} \quad \text { and } \quad Q:=\frac{f\left(-q^{2}\right)}{q^{1 / 3} f\left(-q^{10}\right)},
$$

then

$$
\begin{equation*}
P Q+\frac{5}{P Q}=\left(\frac{Q}{P}\right)^{3}+\left(\frac{P}{Q}\right)^{3} \tag{1.3}
\end{equation*}
$$

These modular equations are also called Schläfli-type. Since the publication of [5], several authors, including N. D. Baruah [2], [3] M. S. M. Naikia [7], [8] K. R. Vasuki [12], [13] and K. R. Vasuki and B. R. Srivatsa Kumar [14] have found additional modular equations of the type (1.3). Recently C. Adiga, et. al. [1] have established several modular relations for the Rogers-Ramanujan type functions of order eleven which analogous to Ramanuja's forty identities for Rogers-Ramanujan functions and also they established certain interesting partition-theoritic interpretation of some of the modular relations and H. M. Srivastava and M. P. Chaudhary [11] established a set of four new results which depicit the interrelationships between q-product identities, coninued fraction identities and combinatorial partition identities.

On page 366 of his 'Lost' notebook [10], Ramanujan has recorded a continued fraction

$$
G(q):=\frac{q^{1 / 3}}{1}+\frac{q+q^{2}}{1}+\frac{q^{2}+q^{4}}{1}+\ldots \quad|q|<1
$$

and claimed that there are many results of $G(q)$ which are analogous to the famous Roger's-Ramanujan continued fraction. Motivated by Ramanujan's claim H. H. Chan [6], N. D. Baruah [2], K. R. Vasuki and B. R. Srivatsa Kumar [15] have established new identities providing the relations between $G(q)$ and seven continued fractions $G(-q), G\left(q^{2}\right), G\left(q^{3}\right), G\left(q^{5}\right), G\left(q^{7}\right), G\left(q^{11}\right)$ and $G\left(q^{13}\right)$. We conclude this introduction by recalling certain results on $G(q)$ stated by Ramanujan [4] and H . H. Chan [6].

$$
\begin{equation*}
G(-q):=q^{1 / 3} \frac{\chi(q)}{\chi\left(q^{3}\right)} \tag{1.4}
\end{equation*}
$$

where $\chi(q)$ is defined as $\chi(q)=\left(-q ; q^{2}\right)_{\infty}$.

$$
\begin{equation*}
G(q)+G(-q)+2 G^{2}(-q) G^{2}(q)=0 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{2}(q)+2 G^{2}\left(q^{2}\right) G(q)-G\left(q^{2}\right)=0 \tag{1.6}
\end{equation*}
$$

For a proof of (1.5) and (1.6), see [6].
Motivated by the above works in this paper, we establish some new $P-Q$ type modular equations, by employing Ramanujan's modular equations.

2. Main Results

Theorem 2.1. If

$$
X:=q^{1 / 3} \frac{\chi(q) \chi\left(q^{6}\right)}{\chi\left(q^{3}\right) \chi\left(q^{2}\right)} \quad \text { and } \quad Y:=q^{2 / 3} \frac{\chi\left(q^{2}\right) \chi\left(q^{12}\right)}{\chi\left(q^{6}\right) \chi\left(q^{4}\right)}
$$

then

$$
\begin{aligned}
& 2 X^{2}-22 Y^{4} X^{3}-2 Y+4 Y^{2} X-18 X^{2} Y^{3}+17 Y^{9} X^{2}-10 Y^{8} X+17 Y^{10} X^{3}+Y^{11} X \\
& +34 Y^{5} X+328 Y^{7} X^{3}-160 Y^{6} X^{2}-30 Y^{7} X^{6}-30 Y^{6} X^{5}+12 Y^{5} X^{4}-371 Y^{8} X^{4}+328 Y^{9} X^{5} \\
& -10 Y^{11} X^{4}-160 Y^{10} X^{6}+34 Y^{11} X^{7}-22 Y^{9} X^{8}+12 Y^{8} X^{7}+4 Y^{11} X^{10}-18 Y^{10} X^{9}-2 Y^{12} X^{11} \\
& \quad+10 Y^{2} X^{4}+20 Y^{4} X^{6}+20 Y^{6} X^{8}+10 X^{10} Y^{8}+2 Y^{10} X^{12}=0 .
\end{aligned}
$$

Proof. From (1.4) and the definition of X and Y, it can be seen that

$$
\begin{equation*}
B-A X=0 \quad \text { and } \quad C-B Y=0 \tag{2.1}
\end{equation*}
$$

where $A=G(-q), B=G\left(-q^{2}\right)$ and $C=G\left(-q^{4}\right)$. On changing q to q^{2} in (1.5), we have

$$
\begin{equation*}
G\left(q^{2}\right)+G\left(-q^{2}\right)+2 G^{2}\left(-q^{2}\right) G^{2}\left(q^{2}\right)=0 \tag{2.2}
\end{equation*}
$$

and also change q to $-q$ in (1.6), we have

$$
\begin{equation*}
G^{2}(-q)+2 G^{2}\left(q^{2}\right) G(-q)-G\left(q^{2}\right)=0 \tag{2.3}
\end{equation*}
$$

Eliminating $G\left(q^{2}\right)$ between (2.2) and (2.3) using Maple,

$$
\begin{equation*}
2(A B)^{4}-4(A B)^{3}+3(A B)^{2}+A B+A^{3}+B^{3}=0 . \tag{2.4}
\end{equation*}
$$

Now on using first identity of (2.1) in (2.4), we obtain

$$
\begin{equation*}
2 B^{6}-4 B^{4} X+3 B^{2} X^{2}+X^{3}+B X+B X^{4}=0 . \tag{2.5}
\end{equation*}
$$

On replacing q to q^{2} in (2.4) we see that

$$
2(B C)^{4}-4(B C)^{3}+3(B C)^{2}+B C+B^{3}+C^{3}=0
$$

Using second identity of (2.1) in the above, it is easy ton see that

$$
2 B^{6} Y^{4}-4 B^{4} Y^{3}+3 B^{2} Y^{2}+Y+B+B Y^{3}=0
$$

Finally, on eliminating B between (2.5) and the above, using Maple we obtain

$$
P(X, Y) Q(X, Y)=0
$$

where

$$
\begin{aligned}
P(X, Y)=X-16 Y^{4} X^{2}- & 6 X Y^{3}-6 Y^{5} X^{3}-2 Y^{5}+Y^{5} X^{6}+10 Y^{3} X^{4}+10 Y^{2} X^{3} \\
+ & 5 Y X^{2}+5 Y^{4} X^{5}-2 Y^{6} X
\end{aligned}
$$

and

$$
\begin{aligned}
& Q(X, Y)=-2 Y+2 X^{2}-22 Y^{4} X^{3}+4 Y^{2} X-18 X^{2} Y^{3}+17 Y^{9} X^{2}-10 Y^{8} X+17 Y^{10} X^{3} \\
& +Y^{11} X+328 Y^{7} X^{3}+34 Y^{5} X-160 Y^{6} X^{2}-30 Y^{7} X^{6}-30 Y^{6} X^{5}+12 Y^{5} X^{4}-18 Y^{10} X^{9} \\
& -371 Y^{8} X^{4}+328 Y^{9} X^{5}-10 Y^{11} X^{4}-160 Y^{10} X^{6}+34 Y^{11} X^{7}-22 Y^{9} X^{8}+12 Y^{8} X^{7} \\
& +4 Y^{11} X^{10}-2 Y^{12} X^{11}+2 Y^{10} X^{12}+10 Y^{2} X^{4}+20 Y^{6} X^{8}+20 Y^{4} X^{6}+10 X^{10} Y^{8}
\end{aligned}
$$

By examining the behavour of the first factor near $q=0$, it can be seen that there is a neighbourhood about the origin, where $P(X, Y) \neq 0$ and $Q(X, Y)=0$ in this neighbourhood. Hence by the identity theorem, we have $Q(X, Y)=0$.

Theorem 2.2. If

$$
X:=q^{1 / 6} \frac{\chi^{2}\left(q^{3}\right)}{\chi(q) \chi\left(q^{9}\right)} \quad \text { and } \quad Y:=q^{1 / 3} \frac{\chi^{2}\left(q^{6}\right)}{\chi\left(q^{2}\right) \chi\left(q^{18}\right)}
$$

then

$$
\begin{align*}
& \left(\frac{X}{Y}\right)^{3}+\left(\frac{Y}{X}\right)^{3}+\left\{(X Y)^{5 / 2}+\frac{1}{(X Y)^{5 / 2}}+11\left((X Y)^{1 / 2}+\frac{1}{(X Y)^{1 / 2}}\right)\right\}\left[\left(\frac{X}{Y}\right)^{3 / 2}+\left(\frac{Y}{X}\right)^{3 / 2}\right] \\
& (2.6) \tag{2.6}\\
& =(X Y)^{3}+\frac{1}{(X Y)^{3}}-11\left((X Y)^{2}+\frac{1}{(X Y)^{2}}\right)+44\left(X Y+\frac{1}{X Y}\right)+8\left(X^{3}+\frac{1}{X^{3}}\right)+8\left(Y^{3}+\frac{1}{Y^{3}}\right)-86
\end{align*}
$$

Proof. From Entry 12(v)of Chapter 17 [4, p. 124], we have

$$
\begin{equation*}
X=\left\{\frac{\alpha \gamma(1-\alpha)(1-\gamma)}{\beta^{2}(1-\beta)^{2}}\right\}^{1 / 24} \tag{2.7}
\end{equation*}
$$

where β and γ be of the third and ninth degrees respectively, with respect to α. Let

$$
B:=q^{1 / 3} \frac{\chi^{2}\left(-q^{6}\right)}{\chi\left(-q^{2}\right) \chi\left(-q^{18}\right)} .
$$

Then from Entry 12(vii) of Chapter 17 [4, p. 124], we have

$$
\begin{equation*}
B=\left\{\frac{\alpha^{2} \gamma^{2}(1-\beta)^{2}}{\beta^{4}(1-\alpha)(1-\gamma)}\right\}^{1 / 24} \tag{2.8}
\end{equation*}
$$

By (2.7) and (2.8), we deduce that

$$
\begin{equation*}
\left(\frac{\alpha \gamma}{\beta^{2}}\right)^{1 / 8}=X B \quad \text { and } \quad\left\{\frac{(1-\alpha)(1-\gamma)}{(1-\beta)^{2}}\right\}^{1 / 8}=\frac{X^{2}}{B} . \tag{2.9}
\end{equation*}
$$

From Entry 3 (xii) and (xiii) of Chapter 20 [4, p. 352-358], we have

$$
\begin{equation*}
\left(\frac{\beta^{2}}{\alpha \gamma}\right)^{1 / 4}+\left(\frac{(1-\beta)^{2}}{(1-\alpha)(1-\gamma)}\right)^{1 / 4}-\left(\frac{\beta^{2}(1-\beta)^{2}}{\alpha \gamma(1-\alpha)(1-\gamma)}\right)^{1 / 4}=-\frac{3 m}{m^{\prime}} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\alpha \gamma}{\beta^{2}}\right)^{1 / 4}+\left(\frac{(1-\alpha)(1-\gamma)}{(1-\beta)^{2}}\right)^{1 / 4}-\left(\frac{\alpha \gamma(1-\alpha)(1-\gamma)}{\beta^{2}(1-\beta)^{2}}\right)^{1 / 4}=\frac{m^{\prime}}{m} \tag{2.11}
\end{equation*}
$$

where $m=z_{1} / z_{3}$ and $m^{\prime}=z_{3} / z_{9}$. Thus (2.9), (2.10) and (2.11) yields $M\left(X^{2} B^{4}+X^{4}-B^{2} X^{6}\right)-B^{2}=0 \quad$ and $\quad X^{4}+X^{2} B^{4}-B^{2}+3 M X^{6} B^{2}=0$.
where $M=m / m^{\prime}$. Which implies

$$
\begin{equation*}
X^{6} B^{6}-6 B^{4} X^{4}-B^{8} X^{2}+B^{6}-X^{6}+B^{2} X^{2}+X^{8} B^{2}=0 \tag{2.12}
\end{equation*}
$$

Let

$$
A:=q^{1 / 6} \frac{\chi^{2}\left(-q^{3}\right)}{\chi(-q) \chi\left(-q^{9}\right)}
$$

Then, from Entry $12(\mathrm{vi})$ of Chapter 17 [4, p. 124], we have

$$
\begin{equation*}
A=\left\{\frac{\alpha \gamma(1-\beta)^{4}}{\beta^{2}(1-\alpha)^{2}(1-\gamma)^{2}}\right\}^{1 / 24} \tag{2.13}
\end{equation*}
$$

From (2.7) and (2.13), we obtain

$$
\left\{\frac{(1-\alpha)(1-\gamma)}{(1-\beta)^{2}}\right\}^{1 / 8}=\frac{X}{A} \quad \text { and } \quad\left(\frac{\alpha \gamma}{\beta^{2}}\right)^{1 / 8}=A X^{2}
$$

Using the above in (2.10) and (2.11), we deduce

$$
\left(X^{4} A^{4}+X^{2}-X^{6} A^{2}\right) M-A^{2}=0 \quad \text { and } \quad X^{2}+X^{4} A^{4}-A^{2}+3 M X^{6} A^{2}=0 .
$$

From the above two identities, we obtain

$$
X^{8} A^{6}-6 X^{4} A^{4}-A^{8} X^{6}+A^{6} X^{2}-X^{2}+A^{2}+X^{6} A^{2}=0 .
$$

Changing q to q^{2} in the above, we have

$$
\begin{equation*}
Y^{8} B^{6}-6 Y^{4} B^{4}-B^{8} Y^{6}+B^{6} Y^{2}-Y^{2}+B^{2}+Y^{6} B^{2}=0 \tag{2.14}
\end{equation*}
$$

Now on eliminating B, between (2.12) and (2.14), using Maple we obtain

$$
C(X, Y) D(X, Y)=0
$$

where

$$
C(X, Y)=X^{4} Y+X^{3}+X Y+6 Y^{2} X^{2}+Y^{3} X^{3}+Y^{3}+X Y^{4}
$$

and

$$
\begin{gathered}
D(X, Y)=X^{8} Y^{5}-Y^{7} X^{7}-8 Y^{4} X^{7}+X^{7} Y+11 X^{6} Y^{6}+11 Y^{3} X^{6}+X^{5} Y^{8}-44 Y^{5} X^{5} \\
+11 X^{5} Y^{2}-8 X^{4} Y^{7}+86 Y^{4} X^{4}-8 X^{4} Y+11 Y^{6} X^{3}-44 Y^{3} X^{3}+X^{3}+11 Y^{5} X^{2} \\
+11 Y^{2} X^{2}+X Y^{7}-8 X Y^{4}-X Y+Y^{3}
\end{gathered}
$$

By examining the behavour of $C(X, Y)$ near $q=0$, it can be seen that there is a neighbourhood about the origin, where this factor is not zero. Then the second factor $D(X, Y)=0$ in this neighbourhood. Hence by the identity theorem, we have

$$
D(X, Y)=0
$$

On dividing the above throughout by $(X Y)^{4}$, we obtain the result.
Theorem 2.3. If

$$
X:=q^{1 / 3} \frac{\chi\left(q^{3}\right) \chi\left(q^{5}\right)}{\chi(q) \chi\left(q^{15}\right)} \quad \text { and } \quad Y:=q^{2 / 3} \frac{\chi\left(q^{6}\right) \chi\left(q^{10}\right)}{\chi\left(q^{2}\right) \chi\left(q^{30}\right)}
$$

then

$$
\begin{equation*}
\left(\frac{X}{Y}\right)^{3}+\left(\frac{Y}{X}\right)^{3}+\left[(X Y)^{5 / 2}+\frac{1}{(X Y)^{5 / 2}}+(X Y)^{1 / 2}+\frac{1}{(X Y)^{1 / 2}}\right]\left(\left(\frac{X}{Y}\right)^{3 / 2}+\left(\frac{Y}{X}\right)^{3 / 2}\right) \tag{2.15}
\end{equation*}
$$

$=(X Y)^{3}+\frac{1}{(X Y)^{3}}-5\left((X Y)^{2}+\frac{1}{(X Y)^{2}}\right)+10\left(X Y+\frac{1}{X Y}\right)+4\left(X^{3}+\frac{1}{X^{3}}+Y^{3}+\frac{1}{Y^{3}}\right)-20$.

Proof. Let

$$
B:=q^{2 / 3} \frac{\chi\left(-q^{6}\right) \chi\left(-q^{10}\right)}{\chi\left(-q^{2}\right) \chi\left(-q^{30}\right)}
$$

By Entry 12(v) and (vii) of Chapter 17 [4, p. 124], we have

$$
\begin{equation*}
X=\left\{\frac{\alpha \delta(1-\alpha)(1-\delta)}{\beta \gamma(1-\beta)(1-\gamma)}\right\}^{1 / 24} \quad \text { and } \quad B=\left\{\frac{\alpha^{2} \delta^{2}(1-\beta)(1-\gamma)}{\beta^{2} \gamma^{2}(1-\alpha)(1-\delta)}\right\}^{1 / 24} \tag{2.16}
\end{equation*}
$$

where α, β, γ and δ are of the first, third, fifth and fifteenth degrees respectively. From (2.16), we deduce that

$$
\begin{equation*}
\left(\frac{\alpha \delta}{\beta \gamma}\right)^{1 / 8}=X B, \quad\left\{\frac{(1-\alpha)(1-\delta)}{(1-\beta)(1-\gamma)}\right\}^{1 / 8}=\frac{X^{2}}{B} . \tag{2.17}
\end{equation*}
$$

From Entry 11(viii) and (ix) of Chapter 20 [4, p. 383-397], we have

$$
\begin{equation*}
\left(\frac{\alpha \delta}{\beta \gamma}\right)^{1 / 8}+\left(\frac{(1-\alpha)(1-\delta)}{(1-\beta)(1-\gamma)}\right)^{1 / 8}-\left(\frac{\alpha \delta(1-\alpha)(1-\delta)}{\beta \gamma(1-\beta)(1-\gamma)}\right)^{1 / 8}=\sqrt{\frac{m^{\prime}}{m}} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\beta \gamma}{\alpha \delta}\right)^{1 / 8}+\left(\frac{(1-\beta)(1-\gamma)}{(1-\alpha)(1-\delta)}\right)^{1 / 8}-\left(\frac{\beta \gamma(1-\beta)(1-\gamma)}{\alpha \delta(1-\alpha)(1-\delta)}\right)^{1 / 8}=-\sqrt{\frac{m}{m^{\prime}}} . \tag{2.19}
\end{equation*}
$$

Employing (2.17) in (2.18) and (2.19), we obtain

$$
M\left(X B^{2}+X^{2}-X^{3} B\right)-B=0 \quad \text { and } \quad X^{2}+B^{2} X-B+M B X^{3}=0,
$$

where $M=\sqrt{m / m^{\prime}}$. Which implies

$$
\begin{equation*}
4 X^{2} B^{2}+X^{3}-X^{4} B+X B^{4}-X^{3} B^{3}-B^{3}-B X=0 \tag{2.20}
\end{equation*}
$$

Let

$$
A:=q^{1 / 3} \frac{\chi\left(-q^{3}\right) \chi\left(-q^{5}\right)}{\chi(-q) \chi\left(-q^{15}\right)} .
$$

Then, by employing Entry $12(\mathrm{vi})$ of Chapter 17 [4, p. 124] and (2.16) we deduce that

$$
\left\{\frac{(1-\alpha)(1-\delta)}{(1-\beta)(1-\gamma)}\right\}^{1 / 8}=\frac{X}{A} \quad \text { and } \quad\left(\frac{\alpha \delta}{\beta \gamma}\right)^{1 / 8}=A X^{2}
$$

Using these in (2.18) and (2.19), upon simplifying the resulting identities, and then replacing q by q^{2}, we obtain

$$
\begin{equation*}
4 B^{2} Y^{2}+Y-B Y^{3}+B^{4} Y^{3}-B^{3} Y^{4}-B^{3} Y-B=0 . \tag{2.21}
\end{equation*}
$$

Eliminating B from (2.20) and (2.21), using Maple we obtain

$$
C(X, Y) D(X, Y)=0 .
$$

where

$$
C(X, Y)=X^{4} Y+X^{3}+X Y+4 Y^{2} X^{2}+Y^{3} X^{3}+Y^{3}+X Y^{4}
$$

and

$$
D(X, Y)=X^{8} Y^{5}-X^{7} Y^{7}-4 X^{7} Y^{4}+X^{7} Y+5 X^{6} Y^{6}+X^{6} Y^{3}+X^{5} Y^{2}+X^{5} Y^{8}
$$

$$
\begin{gathered}
-10 Y^{5} X^{5}-4 X^{4} Y^{7}+20 X^{4} Y^{4}-4 X^{4} Y+X^{3} Y^{6}-10 Y^{3} X^{3}+X^{3}+X^{2} Y^{5} \\
+5 Y^{2} X^{2}+X Y^{7}-4 X Y^{4}-X Y+Y^{3}
\end{gathered}
$$

It is same as discussed in Theorem 2.2, that $C(X, Y) \neq 0$ near $q=0$ whereas $D(X, Y)=0$ in some neighbourhood $q=0$. Hence by identity theorem, we have

$$
D(X, Y)=0
$$

Finally, on dividing the above throughout by $(X Y)^{4}$, we obtain the result.

Theorem 2.4. If

$$
X:=q^{2 / 3} \frac{\chi(q) \chi\left(q^{7}\right)}{\chi\left(q^{3}\right) \chi\left(q^{21}\right)} \quad \text { and } \quad Y:=q^{4 / 3} \frac{\chi\left(q^{2}\right) \chi\left(q^{14}\right)}{\chi\left(q^{6}\right) \chi\left(q^{42}\right)}
$$

then
$p_{12}+14 p_{11}+229 p_{10}+1328 p_{9}+1635 p_{8}-15550 p_{7}-8529 p_{6}-177572 p_{5}-37641 p_{4}+$ $764070 p_{3}+2368728 p_{2}+4125694 p_{1}-2\left(2 q_{23}+24 q_{21}+158 q_{19}+586 q_{17}+663 q_{15}+\right.$ $\left.13509 q_{13}+43169 q_{11}+36801 q_{9}-14490 q_{7}-612613 q_{5}-1259739 q_{3}-1742545 q_{1}\right) r_{3}-$ $2\left(2 q_{21}-6 q_{19}+51 q_{17}+208 q_{15}-111 q_{13}-2275 q_{11}-8880 q_{9}-22598 q_{7}-43267 q_{5}+\right.$ $\left.65339 q_{3}-79989 q_{1}\right) r_{9}-2\left(q_{15}+2 q_{13}+4 q_{11}+20 q_{9}+78 q_{7}+88 q_{5}+38 q_{3}+155 q_{1}\right) r_{15}+$ $\left(6 p_{11}+60 p_{10}+162 p_{9}-560 p_{8}-5129 p_{7}-11254 p_{6}+10488 p_{5}+126726 p_{4}+406080 p_{3}+\right.$ $\left.828738 p_{2}+1238441 p_{1}+1410116\right) s_{3}+\left(p_{10}-10 p_{9}+11 p_{8}+60 p_{7}+218 p_{6}+896 p_{5}+\right.$ $\left.2022 p_{4}+3816 p_{3}+7277 p_{2}+111558 p_{1}+13838\right) s_{6}+\left(p_{5}-2 p_{4}-3 p_{3}+8 p_{2}+2 p_{1}-\right.$ 12) $s_{9}+4907562=0$.
where

$$
\begin{align*}
& p_{n}=(X Y)^{n}+\frac{1}{(X Y)^{n}}, \quad q_{n}=(X Y)^{n / 2}+\frac{1}{(X Y)^{n / 2}} \tag{2.22}\\
& r_{n}=\left(\frac{X}{Y}\right)^{n / 2}+\left(\frac{Y}{X}\right)^{n / 2}, \quad s_{n}=\left(\frac{X}{Y}\right)^{n}+\left(\frac{Y}{X}\right)^{n}
\end{align*}
$$

Proof. Let

$$
B:=q^{4 / 3} \frac{\chi\left(-q^{2}\right) \chi\left(-q^{14}\right)}{\chi\left(-q^{6}\right) \chi\left(-q^{42}\right)}
$$

Then from Entry 12 (v) and (vii) of Chapter 17 [4, p. 124], we have

$$
\begin{equation*}
X=\left\{\frac{\beta \delta(1-\beta)(1-\delta)}{\alpha \gamma(1-\alpha)(1-\gamma)}\right\}^{1 / 24} \quad \text { and } \quad B=\left\{\frac{\beta^{2} \delta^{2}(1-\alpha)(1-\gamma)}{\alpha^{2} \gamma^{2}(1-\beta)(1-\delta)}\right\}^{1 / 24} \tag{2.23}
\end{equation*}
$$

where α, β, γ and δ are of the degrees $1,3,7$ and 21 respectively. From (2.23), we deduce that

$$
\begin{equation*}
X B=\left(\frac{\beta \delta}{\alpha \gamma}\right)^{1 / 8}, \quad \frac{X^{2}}{B}=\left\{\frac{(1-\beta)(1-\delta)}{(1-\alpha)(1-\gamma)}\right\}^{1 / 8} \tag{2.24}
\end{equation*}
$$

From Entry 13 of Chapter 20 [4, p. 400-403], we have

$$
\begin{align*}
& \left(\frac{\beta \delta}{\alpha \gamma}\right)^{1 / 4}+\left(\frac{(1-\beta)(1-\delta)}{(1-\alpha)(1-\gamma)}\right)^{1 / 4}+\left(\frac{\beta \delta(1-\beta)(1-\delta)}{\alpha \gamma(1-\alpha)(1-\gamma)}\right)^{1 / 4} \\
& -2\left(\frac{\beta \delta(1-\beta)(1-\delta)}{\alpha \gamma(1-\alpha)(1-\gamma)}\right)^{1 / 8}\left\{1+\left(\frac{\beta \delta}{\alpha \gamma}\right)^{1 / 8}+\left(\frac{(1-\beta)(1-\delta)}{(1-\alpha)(1-\gamma)}\right)^{1 / 8}\right\}=m m^{\prime} \tag{2.25}
\end{align*}
$$

and

$$
\begin{equation*}
-2\left(\frac{\alpha \gamma(1-\alpha)(1-\gamma)}{\beta \delta(1-\beta)(1-\delta)}\right)^{1 / 8}\left\{1+\left(\frac{\alpha \gamma}{\beta \delta}\right)^{1 / 8}+\left(\frac{(1-\alpha)(1-\gamma)}{(1-\beta)(1-\delta)}\right)^{1 / 8}\right\}=\frac{9}{m m^{\prime}} \tag{2.26}
\end{equation*}
$$

Employing (2.24) in (2.25) and (2.26), we obtain

$$
X^{2} B^{4}+X^{4}+B^{2} X^{6}-2 B X^{3}\left(B+X B^{2}+X^{2}\right)-B^{2} M=0
$$

and

$$
\left(X^{2} B^{4}+X^{4}+B^{2}-2 B X\left(B X^{2}+X+B^{2}\right)\right) M-9 B^{2} X^{6}=0
$$

where $M=m m^{\prime}$, which implies

$$
\begin{gather*}
X^{6}+B^{6}+6 B^{4} X^{4}+X^{8} B^{2}-2 X^{7} B+X^{2} B^{8}+X^{6} B^{6}-2 X^{4} B^{7} \\
\quad+B^{2} X^{2}-2 B^{4} X-2 B^{4} X^{7}-2 B X^{4}-2 B^{7} X=0 \tag{2.27}
\end{gather*}
$$

Let

$$
A:=q^{2 / 3} \frac{\chi(-q) \chi\left(-q^{7}\right)}{\chi\left(-q^{3}\right) \chi\left(-q^{21}\right)}
$$

From Entry 12 (vi) of Chapter 17 [4, p. 124] and (2.23), we deduce that

$$
\frac{X}{A}=\left\{\frac{(1-\beta)(1-\delta)}{(1-\alpha)(1-\gamma)}\right\}^{1 / 8} \quad \text { and } \quad A X^{2}=\left(\frac{\beta \delta}{\alpha \gamma}\right)^{1 / 8}
$$

Employing these in (2.25) and (2.26) up on simplifying, the resulting identities and then replacing q by q^{2}, we obtain

$$
\begin{align*}
B^{2} Y^{6}+ & B^{2}-2 B Y+B^{8} Y^{6}+B^{6} Y^{8}-2 B^{7} Y^{7}+B^{6} Y^{2}-2 B^{4} Y \\
& -2 B^{4} Y^{7}-2 B^{7} Y^{4}-2 B Y^{4}+Y^{2}+6 B^{4} Y^{4}=0 \tag{2.28}
\end{align*}
$$

On eliminating B between (2.27) and (2.28), using Maple we obtain

$$
C(X, Y) D(X, Y) E(X, Y)=0
$$

where

$$
\begin{gathered}
C(X, Y)=X^{6} Y^{6}-2 X^{4} Y^{7}+X^{2} Y^{8}-2 X Y^{7}-2 X^{7} Y-2 X^{4} Y+Y^{6}+Y^{2} X^{8} \\
+X^{2} Y^{2}+6 Y^{4} X^{4}-2 Y^{4} X-2 Y^{4} X^{7}+X^{6}, \\
D(X, Y)=Y^{6}+256 X^{6} Y^{6}+38 X^{4} Y^{7}+2 X^{2} Y^{8}-2 X^{4} Y+2 Y^{2} X^{8}+X^{2} Y^{2}+29 Y^{4} X^{4} \\
-2 Y^{4} X+38 Y^{4} X^{7}-16 X^{14} Y^{5}+66 X^{10} Y^{7}+14 X^{8} Y^{5}-10 X^{5} Y^{11}-20 X^{3} Y^{12}-10 X^{11} Y^{5} \\
+X^{14} Y^{2}+72 X^{7} Y^{7}-20 Y^{13} X^{4}-35 X^{4} Y^{10}+66 Y^{9} X^{6}-16 X^{5} Y^{14}-35 X^{10} Y^{4}+X^{10} Y^{16} \\
-2 X^{6} Y^{15}-35 X^{6} Y^{12}-4 X^{7} Y^{13}+66 X^{7} Y^{10}+2 X^{8} Y^{14}+14 X^{8} Y^{11}+466 X^{8} Y^{8}+38 X^{9} Y^{12} \\
+72 X^{9} Y^{9}+256 X^{10} Y^{10}+12 X^{11} Y^{11}+14 X^{11} Y^{8}-2 X^{12} Y^{15}+29 X^{12} Y^{12}+38 X^{12} Y^{9} \\
-35 X^{12} Y^{6}-14 X^{10} Y^{13}-2 X^{15} Y^{6}-2 X^{13} Y^{13}-14 X^{13} Y^{10}-4 X^{13} Y^{7}+X^{14} Y^{14}+2 X^{14} Y^{8} \\
-2 X^{15} Y^{12}+X^{16} Y^{10}+14 X^{5} Y^{8}-4 X^{3} Y^{9}+Y^{14} X^{2}-2 X Y^{10}-2 Y X^{10}-16 X^{2} Y^{11}+X^{6} \\
-2 X^{3} Y^{3}-20 X^{13} Y^{4}+66 X^{9} Y^{6}-16 Y^{2} X^{11}-14 X^{6} Y^{3}-20 Y^{3} X^{12}-4 Y^{3} X^{9}+12 X^{5} Y^{5}-14 X^{3} Y^{6} .
\end{gathered}
$$

and $E(X, Y)$ is as in (2.22).
As discussed in Theorem 2.2, by examining the behaviour of $C(X, Y)$ and $D(X, Y)$ near $q=0$, it can be seen that there is a neighbourhood about the origin, where these factors are not zero. Then the third factor $E(X, Y)=0$ in this neighbourhood. Hence by identity theorem, we have $E(X, Y)=0$. Finally, on dividing $E(X, Y)$ throughout by $(P Q)^{16}$ and then simplifying we have the result.

Acknowledgement. The author would like to thank the anonymous referee for his/her valuable suggestions.

References

[1] C. Adiga, N. A. S. Bulhali, D. Ranganatha and H. M. Srivastava Some new modular relations for the Rogers-Ramanujan type functions of order eleven with applications to partitions, J. of Number Theory, 158(2016), 281-297.
[2] N. D. Baruah, Modular equations for Ramanujan's cubic continued fraction, J. Math. Anal. Appl., 268(2002), 244-255.
[3] N. D. Baruah, On some of Ramanujan's Schläfli-type "mixed" modular equations, J. Number Theory, 100(2003), 270-294.
[4] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
[5] B. C. Berndt, Ramanujan's Notebooks, Part IV, Springer-Verlag, New York, 1994.
[6] H. H. Chan, On Ramanujan's cubic continued fraction, Acta Arith., 73(1995), 343345.
[7] M. S. M. Naika, A note on cubic modular equations of degree two, Tamsui Oxf. J. Math. Sci., 22(2006), 1-8.
[8] M. S. M. Naika, S. Chandan Kumar, Some new Schläfli-type modular equations in quartic theory, In Ramanujan Math. Soc. Lect. Notes ser., 14(2010), 185-199.
[9] S. Ramanujan, Notebooks (2 Volumes), Tata Instiute of Fundamental Research, Bombay, 1957.
[10] S. Ramanujan, The Lost Notebook and other unpublished papers, Narosa, New Delhi 1988.
[11] H. M. Srivastava and M. P. Choudhary, Some relationships between q-product identities, combinatorial partition identities and continued fraction identities, Advanced Studies in Contemporary Mathematics, 25(3)(2015), 265-272.
[12] K. R. Vasuki, T. G. Sreeramamurthy, A note on $P-Q$ modular equations, Tamsui Oxf. J. Math. Sci., 21(2005), 109-120.
[13] K. R. Vasuki, On Some Ramanujan's $P-Q$ modular equations, J. Indian Math. Soc., 73(2006), 131-143.
[14] K. R. Vasuki and B. R. Srivatsa Kumar, Evaluation of the Ramanujan-GöllnitzGordon continued fraction $H(q)$ by modular equations, Indian J. of Mathematics, 48(3)(2006), 275-300.
[15] K. R. Vasuki and B. R. Srivatsa Kumar, Two identities for Ramanujan's cubic continued fraction, Preprint.
[16] E. T. Whittekar, G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1966.

