DOI QR코드

DOI QR Code

Seismic Vulnerability Assessment of RC Frame Structures Using 3D Analytical Models

3차원 해석 모델을 이용한 RC 프레임 구조물의 지진 취약도 평가

  • Moon, Do-Soo (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Young-Joo (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Sangmok (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • 문도수 (울산과학기술원 도시환경공학부) ;
  • 이영주 (울산과학기술원 도시환경공학부) ;
  • 이상목 (울산과학기술원 도시환경공학부)
  • Received : 2016.08.18
  • Accepted : 2016.09.09
  • Published : 2016.09.30

Abstract

As the structural damage caused by earthquakes has been gradually increasing, estimating the seismic fragility of structures has become essential for earthquake preparation. Seismic fragility curves are widely used as a probabilistic indicator of structural safety against earthquakes, and many researchers have made efforts to develop them in a more accurate and effective manner. However, most of the previous research studies used simplified 2D analytical models when deriving fragility curves, mainly to reduce the numerical simulation time; however, in many cases 2D models are inadequate to accurately evaluate the seismic behavior of a structure and its seismic vulnerability. Thus, this study provides a way to derive more accurate, but still effective, seismic fragility curves by using 3D analytical models. In this method, the reliability analysis software, FERUM, is integrated with the structural analysis software, ZEUS-NL, enabling the automatic exchange of data between these two software packages, and the first order reliability method (FORM), which is not a sampling-based method, is utilized to calculate the structural failure probabilities. These tools make it possible to conduct structural reliability analyses effectively even with 3D models. By using the proposed method, this study conducted a seismic vulnerability assessment of RC frame structures with their 3D analytical models.

지진으로 인한 구조물의 피해가 지속적으로 증가하면서, 구조물의 취약성을 평가하는 일은 지진 대비에 필수적으로 여겨지고 있다. 지진 취약도 곡선은 지진에 대한 구조물의 안전도에 대한 확률 지표로써 널리 이용되고 있으며, 많은 연구자들에 의해 보다 정확하고 효율적인 취약도 곡선 도출을 위한 노력이 계속되고 있다. 하지만 기존의 대부분의 연구에서는 취약도 곡선 도출시 수치해석 시간 절약을 위해 단순화된 2차원 해석모델을 사용해 왔는데, 많은 경우에 있어 2차원 모델은 정확한 구조물의 내진 거동 및 지진 취약성을 평가하기에 적당하지 않을 수 있다. 이에 본 연구에서는 3차원 해석 모델을 사용하여 더욱 정확하면서도 여전히 효과적으로 지진 취약도 곡선을 도출할 수 있는 방법을 제시한다. 이 방법은 신뢰성 해석 소프트웨어인 FERUM과 구조해석 소프트웨어인 ZEUS-NL을 서로 연동시켜 상호 자동적인 데이터 교환이 가능하게 하고, 샘플링 기법이 아닌 FORM 해석 기법을 통해 구조물의 파괴확률을 구한다. 이는 3차원 모델을 사용의 경우에도 효율적으로 구조 신뢰성 해석이 가능하게 해준다. 이를 이용해 RC 프레임 구조물의 3차원 해석 모델을 사용하여 지진 취약성 평가를 수행하였다.

Keywords

References

  1. C.S. Chung, "Structural integrity evaluation of nuclear seismic category IIA 2" globe valve for seismic loads", Journal of the Korea Academia-Industrial cooperation Society, Vol.9, No.6, pp.1500-1505, 2008. DOI: http://dx.doi.org/10.5762/KAIS.2008.9.6.1500
  2. S. Jeong and A.S. Elnashai, "Probabilistic fragility analysis parameterized by fundamental response quantities", Engineering Structures, Vol.29, pp. 1238-1251, 2007. DOI: http://dx.doi.org/10.1016/j.engstruct.2006.06.026
  3. D.S. Moon and Y.J. Lee, "A new methodology of the development of seismic fragility curves", Smart Structures and Systems, Vol.14, No.5 pp. 847-867, 2014. DOI: http://dx.doi.org/10.12989/sss.2014.14.5.847
  4. A. Der Kiureghian. Fisrt-and second-order reliability methods. chap.14, CRC press, Boca Raton, FL, USA, 2005.
  5. T. Haukaas, "Finite element reliability and sensitivity methods for performance-based engineering", Ph.D. Dissertation, University of California, Berkeley, CA, USA, 2003.
  6. A.S. Elnashai, V.K. Papanikolaou and D. Lee. ZEUS NL-A System for Inelastic Analysis of Structures, User's manual, Mid-America Earthquake (MAE) Center, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2010.
  7. A. Der Kiureghian and R.L. Taylor, "Numerical methods in structural reliability", Proc. of the 4th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP4), June, 1983.
  8. P.L. Liu, H.Z. Lin, A. Der Kiureghian. CalREL User Manual. Report No. UCB/SEMM-89/18, University of California, Berkeley, CA, USA, 1989.
  9. SwRI. NESSUS (ver 9.6), Southwest Reserch Institute, 2011[cited 2016 June 1], Available from: http://www.nessus.swri.org.
  10. Y.J. Lee, J. Song and E.J. Tuegel, "Finite element system reliability analysis of a wing torque box", Proc. of the 10th AIAA Nondeterministic Approaches Conference, Schaumburg, IL, April, 2008. DOI: http://dx.doi.org/10.2514/6.2008-1718
  11. W.H. Kang, Y.J. Lee, J. Song and B. Gencturk, "Further development of matrix-based system reliability method and applications to structural systems", Struct. Infrastruct. E., Vol.8, No.5, pp. 441-457, 2012. https://doi.org/10.1080/15732479.2010.539060
  12. H. Kim and S.-H. Sim, "Flood fragility analysis of bridge piers in consideration of debris impacts", Journal of the Korea Academia-Industrial cooperation Society, Vol.17, No.5, pp.325-331, 2016. DOI: http://dx.doi.org/10.5762/KAIS.2016.17.5.325
  13. O.S. Kwon and A.S. Elnashai, "The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure", Engineering Structures, Vol.28, No.2, pp. 289-303, 2006. DOI: http://dx.doi.org/10.1016/j.engstruct.2005.07.010

Cited by

  1. Fragility Analysis of Space Reinforced Concrete Frame Structures with Structural Irregularity in Plan vol.144, pp.8, 2018, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002092