DOI QR코드

DOI QR Code

CT의 MAR알고리즘 적용 시 의료용 금속 물질별 인공물 감소율 분석

Analysis of the artifact reduction rate for the types of medical metals in CT with MAR algorithm

  • 김현주 (동남보건대학교 방사선과) ;
  • 윤준 (동남보건대학교 방사선과)
  • Kim, Hyeon-ju (Department of Radiologic Technology, Dongnam Health University) ;
  • Yoon, Joon (Department of Radiologic Technology, Dongnam Health University)
  • 투고 : 2016.06.24
  • 심사 : 2016.09.09
  • 발행 : 2016.09.30

초록

의료용 CT영상에서 영상의 화질 저하의 원인으로 인공물을 유발의 원인인 다양한 금속성분의 의료용 재료를 이용하여, 듀얼에너지 CT의 MAR 알고리즘적용 전, 후 영상의 CT value값을 비교 측정하고, 정량적 분석을 통해 MAR Algorithm 적용의 유용성을 알아보았다. 그 결과 MAR 알고리즘 적용 시 대부분의 의료용 금속 물질에서 인공물 감소효과가 있었다(P<0.05). 특히, 의료용 금속물질 중 Stainless합금(78.1% 감소)과 백금소재인 GDC coil(76.1% 감소)처럼 상대적으로 밀도가 높은 의료용 금속물질에서 인공물 감소효과가 높았다(P<0.05). 또한, 인공물 형태에 따른 인공물 감소정도를 정량적 분석을 통해 알아보았다. 그 결과는 MAR 알고리즘 적용 시 Stainless합금과 Titanium합금의 경우 Black hole artifact형태에서 인공물 감소효과가 매우 우수하였고(P<0.05), 백금소재인 GDC coil의 경우는 White streak artifact형태에서 인공물 감소효과가 매우 우수하였다(P<0.05). 향후 의료용 금속 물질 삽입 수술 환자의 경우 듀얼 에너지 CT장비의 MAR알고리즘을 적용하여 CT검사를 시행한다면 금속물질에 기인한 인공물 유발을 감소시켜 보다 뛰어난 화질의 영상정보를 제공할 수 있을 것으로 사료된다.

We investigated on the usefulness of MAR algorithm by making a comparison of the CT value between before and after applying the MAR algorithm in dual energy CT, using the various kinds of medical metals, causing the artifact to lead to the low image quality. As a result, the artifact was reduced in most cases (P<0.05); in particular, the artifact was highly reduced (P<0.05) using high density material, like alloy-stainless (reduced by 78.1%) and platinum, for example GDC coil (reduced by 76.1%). The effect of decreasing the Black hole artifact was outstanding in both the alloy-stainless and alloy-titanium (P<0.05). However, in case of GDC coil-a type platinum, white streak artifact was reduced effectively (P<0.05). Therefore, in case of patients who have medical metals inserted, we think that high-quality image information can be provided by decreasing the artifact caused by high density material through MAR algorithm in dual energy CT.

키워드

참고문헌

  1. B. C. Yoo, D. C. Kwon, J. S. Lee, et al., Comparison radiation dose of z-axis automatic tube current modulation technique with fixed tube current multi-detector row CT scanning of lower extremity venography, J. Radiol. Prot. Vol.32, No. 3 pp. 123-133, 2007.
  2. M. C. Kim, The latest CT imaging technology studies theory QC, Chung-ku moon hwa-sa, pp. 366-399, 2013.
  3. H. J. Kim, A study of beam hardening effect reduction occur in brain CT, Journal of Korean Academia-Industrial cooperation Society Vol. 16, No. 12 pp. 8479-8486, 2015. DOI: http://dx.doi.org/10.5762/KAIS.2015.16.12.8479
  4. H. S. Lim, K, H, Kim, M, K, Kim etc. Computed Tomography, publish of academya pp 29-31, 2010.
  5. Brown CL, Hartman RP, Dzyubak OP, Takahashi N, Kawashima A, McCollough CH, Bruesewitz MR, Primak AM, Fletcher JG. Dual-energy CTiodine overlay technique for characterization of renal masses as cyst or solid a phantom feasibility study, European Journal of Radiology Vol. 19, No. 5, pp. 1289-1295, 2009. DOI: http://dx.doi.org/10.1007/s00330-008-1273-6
  6. Joshi M, Aluri S, Procknow K, Langan DA, Sahani DS. Effective atomic number accuracy for kidney stone characterization using spectral CT, Medical Imaging 2010 : Physics of Medical Imaging. Proc. SPIE Vol.7622 pp. 76223K1-76223K12, 2010. DOI: http://dx.doi.org/10.1117/12.844372
  7. Prell D, Kalender WA, Kyriakou Y. Development, implementation and evaluation of a dedicated metal artefact reduction method for interventional flat-detector CT, British Journal of Radiology Vol. 83. No. 996, pp. 1052-1062, 2010. DOI: http://dx.doi.org/10.1259/bjr/19113084
  8. M. S. Kim, J, S, Chung, M, K, Kim etc. A study of CT scan protocol, Journal of Radiation Protection, Vol. 36, No. 12 pp 80, 2011.
  9. D. W. Kim, H, S. Kim, S. O. Park "Textbook of Computed Tomography, Dae-hak Publishing co, pp. 471, 2010.
  10. S. H. Kim et al, Development and Radiation Shield effects of Dose Reduction Fiber for Fiber for Scatter ray in CT Exams, Journal of Korean Academia-Industrial cooperation Society Vol. 14, No. 4 pp. 1871-1872, 2013. DOI: http://dx.doi.org/10.5762/KAIS.2013.14.4.1871
  11. S. H. Lee, K. H. Yang, S. B. Sun, MAR method of study use to Dual Source CT, Korean Society of Computed Tomography Technology. Vol. 15, No. 1, pp. 177-186, 2013.
  12. C. H Lee, and C. S. Lim, A study on Added Filters for Reduction of Radiation Exposure Dose in Skull A-P Projection, Journal of Korean Academia-Industrial cooperation Society Vol. 12, No. 7 pp. 3117-3122 July 2011. DOI: http://dx.doi.org/10.5762/KAIS.2011.12.7.3117
  13. H. L. Lee et al, The Effect of a Thyroid Shield Made of a Tissue-Equivalent Material on the Reduction of the Thyroid Exposure Dose in Panoramic Radiography, Journal of Korean Academia-Industrial cooperation Society Vol. 13, No. 5 pp. 2278-2284, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.5.2278
  14. H. Park, H. C. Lee, K. D. Kim etc, The elimination of the linear artifacts by the metal restorations in the three dimensional computed tomographic images using the personal computer and software, Korean Journal of Oral and Maxillofacial Radiology, Vol. 22, No. 33, pp. 151-159, 2013.