DOI QR코드

DOI QR Code

Population growth of a tropical tintinnid, Metacylis tropica on different temperature, salinity and diet

수온, 염분 및 먹이에 따른 열대 유종류, Metacylis tropica의 성장

  • Lee, Kyun-Woo (Marine Life & Ecosystem Division, Korea Institute of Ocean Science & Technology) ;
  • Choi, Young-Ung (Marine Life & Ecosystem Division, Korea Institute of Ocean Science & Technology)
  • Received : 2016.06.03
  • Accepted : 2016.09.09
  • Published : 2016.09.30

Abstract

This study investigated the effects of temperature, salinity, and algal diet to find the optimal conditions for 5 days for the mass culture of the tropical tintinnid, Metacylis tropica. This tintinnid had a small, hyaline, and ovoid lorica. The oral diameter, length, and maximum width of the lorica were $36.7{\mu}m$, $49.5{\mu}m$, and $44.5{\mu}m$, respectively. In the temperature experiments, the highest maximum density and population growth rate were observed at $30^{\circ}C$ with 340.7 cells/mL and 1.1/day, respectively. Lower salinities adversely affected the population growth of M. tropica. The maximum density was observed at 33 ppt (840 cells/mL). In the diet experiments, M. tropica fed Isochrysis galbana showed the highest density (413 cells/mL) and population growth rate (1.2/day). As a result, M. tropica is appropriate as a potential prey organism for early fish larvae with smaller mouths because the tintinnid has a relatively small size compared to the rotifer. In addition, the conditions of $30^{\circ}C$, 33 ppt and supplying I. galbana would be effective in the cultivation of M. tropica.

본 연구는 열대 유종류인 Metacylis tropica의 최적배양조건을 구명하기 위해 5일 동안 수온, 염분 및 먹이원인 미세조류의 효과를 조사하였다. M. tropica는 작고 투명한 난형의 피갑을 가지며, 피갑의 구강부 지름, 갑장 및 갑폭의 크기는 각각 $36.7{\mu}m$, $49.5{\mu}m$$44.5{\mu}m$였다. 수온별 실험에서, M. tropica의 최고밀도와 성장률은 수온 $30^{\circ}C$에서 각각 340.7 cells/mL와 1.1/day로 나타났다. 낮은 염분은 M. tropica의 성장에 악영향을 미쳤으며 염분 33 ppt에서 최고밀도가 840 cells/mL로 나타났다. 먹이실험에서, 먹이로 Isochrysis galbana를 공급하였을 때, 가장 높은 성장을 보였다(배양밀도, 413 cells/mL; 성장률, 1.2/day). 본 실험을 종합하여보면, M. tropica는 rotifer에 비해 작은 크기를 가지기 때문에 자어기에 입이 작은 어류의 초기먹이생물로 적합하며, 수온 $30^{\circ}C$, 염분 33 ppt에서 I. galbana를 먹이로 공급하는 것이 M. tropica의 대량배양을 위한 최적배양조건인 것으로 판단된다.

Keywords

References

  1. J. R. Dolan, "Introduction to tintinnids", in The biology and ecology of tintinnid ciliates: models for marine plankton, edited by John R. Dolan, David J.S. Montagnes, Sabine Agatha, D. Wayne Coats, and Diane K. Stoecker (John Wiley & Sons, Ltd., Chichester, 2013), pp. 10-28.
  2. D. K. Stoecker, "Predators of tintinnids", in The biology and ecology of tintinnid ciliates: models for marine plankton, edited by John R. Dolan, David J.S. Montagnes, Sabine Agatha, D. Wayne Coats, and Diane K. Stoecker (Johb Wiley& Sons, Ltd., Chichester, 2013), pp. 122-144.
  3. N. Nagano, Y. Iwatsuki, Y. Okazaki, and H. Nakata, "Feeding strategy of Japanese sand lance larvae in relation to ciliated protozoa in the vicinity of a thermohaline front", Journal of Oceanography 57, 155-163. 2001. DOI: http://dx.doi.org/10.1023/A:1011139107186
  4. N. Nagano, Y. Iwatsuki, T. Kamiyama, and H. Nakata, "Effects of marine ciliates on survivability of the first-feeding larval surgeonfish, Paracanthurus hepatus: laboratory rearing experiments", Hydrobiologia 432, 149-157. 2000. DOI: http://dx.doi.org/10.1023/A:1004094825739
  5. G. D. Treece and D. A. Davis, "Culture of small zooplankters for the feeding of larval fish", SRAC Publication No. 701 2000.
  6. A. Hagiwara, W. G. Gallardo, M. Assavaaree, T. Kotani, and A. B. de Araujo, "Live food production in Japan: recent progress and future aspects", Aquaculture 200, 111-127. 2001. DOI: http://dx.doi.org/10.1016/S0044-8486(01)00696-2
  7. I. Cunha and M. Planas, "Optimal prey size for early turbot larvae (Scophthalmus maximus L.) based on mouth and ingested prey size", Aquaculture 175, 103-110. 1999. DOI: http://dx.doi.org/10.1016/S0044-8486(99)00040-X
  8. M. Duran, "Nota sobre algunos tintinnoineos del plancton de Puerto Rico", Invest Pesq Tomo VIII, 97-120. 1957.
  9. C. Bachy, F. Gomez, P. Lopez-Garcia, J. R. Dolan, and D. Moreira, "Molecular phylogeny of tintinnid ciliates (Tintinnida, Ciliophora)", Protist 163, 873-887. 2012. DOI: http://dx.doi.org/10.1016/j.protis.2012.01.001
  10. K. W. Lee, J. H. Kang, S. H. Baek, Y. U. Choi, D. W. Lee, and H. S. Park, "Toxicity of the dinoflagellate Gambierdiscus sp. toward the marine copepod Tigriopus japonicus", Harmful Algae 37, 62-67. 2014. DOI: http://dx.doi.org/10.1016/j.hal.2014.05.007
  11. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, "MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods", Mol. Biol. Evol. 28, 2731-2739. 2011. DOI: http://dx.doi.org/10.1093/molbev/msr121
  12. D. Stoecker, L. H. Davis, and A. Provan, "Growth of Favella sp. (Ciliata, Tintinnina) and other microzooplankters in cages incubated in situ and comparison to growth in vitro", Mar. Biol. 75, 293-302. 1983. DOI: http://dx.doi.org/10.1007/BF00406015
  13. P. G. Verity, "Grazing, respiration, excretion, and growth rates of tintinnids", Limnol. Oceanogr. 30, 1268-1282. 1985. DOI: http://dx.doi.org/10.4319/lo.1985.30.6.1268
  14. T. Kamiyama and S. Arima, "Feeding characteristics of two tintinnid ciliate species on phytoplankton including harmful species: effects of prey size on ingestion rates and selectivity", J. Exp. Mar. Biol. Ecol. 257, 281-296. 2001. DOI: http://dx.doi.org/10.1016/S0022-0981(00)00341-5
  15. S. L. Graham and S. L. Strom, "Growth and grazing of microzooplankton in response to the harmful alga Heterosigma akashiwo in prey mixtures", Aquat. Microb. Ecol. 59, 111-124. 2010. DOI: http://dx.doi.org/10.3354/ame01391
  16. S. H. Cheng, S. Aoki, M. Maeda, and A. Hino, "Competition between the rotifer Brachionus rotundiformis and the ciliate Euplotes vannus fed on two different algae", Aquaculture 241, 331-343. 2004. DOI: http://dx.doi.org/10.1016/j.aquaculture.2004.08.006
  17. P. Pitta, A. Giannakourou, and U. Christaki, "Planktonic ciliates in the oligotrophic Mediterranean Sea: longitudinal trends of standing stocks, distributions and analysis of food vacuole contents", Aquat. Microb. Ecol. 24, 297-311. 2001. DOI: http://dx.doi.org/10.3354/ame024297
  18. D. J. S. Montagnes, "Ecophysiology and behavior of tintinnids", in The biology and ecology of tintinnid ciliates: models for marine plankton, edited by John R. Dolan, David J.S. Montagnes, Sabine Agatha, D. Wayne Coats, and Diane K. Stoecker (John Wiley & Sons, Ltd., 2013).
  19. D. K. Stoecker, S. M. Gallager, C. J. Langdon, and L. H. Davis, "Particle capture by Favella sp. (Ciliata, Tintinnina)", J. Plankton. Res. 17, 1105-1124. 1995. DOI: http://dx.doi.org/10.1093/plankt/17.5.1105
  20. J. R. Dolan, "Morphology and ecology in tintinnid ciliates of the marine plankton: correlates of lorica dimensions", Acta Protozool. 49, 235-244. 2010.
  21. Y.-O. Kim, E. J. Yang, J.-H. Kang, K. Shin, M. Chang, and C. S. Myung, "Effects of an Artificial Breakwater on the Distributions of Planktonic Microbial Communities", Ocean Sci. J. 42, 9-17. 2007. DOI: http://dx.doi.org/10.1007/BF03020906
  22. T. Kamiyama and Y. Aizawa, "Growth characteristics of two tintinnid ciliates, Tintinnopsis beroidea and Amphorella quadrilineata, in laboratory cultures", Bull. Plankton Soc. Japan 34, 185-191. 1987.
  23. T. Kamiyama, M. Tsujino, Y. Matsuyama, and T. Uchida, "Growth and grazing rates of the tintinnid ciliate Favella taraikaensis on the toxic dinoflagellate Alexandrium tamarense", Mar. Biol. 147, 989-997. 2005. DOI: http://dx.doi.org/10.1007/s00227-005-1629-2