DOI QR코드

DOI QR Code

해수 중 마그네슘 회수를 위한 마그네슘 농축액으로부터 황산마그네슘의 석출

Precipitation of Magnesium Sulfate from Concentrated Magnesium Solution for Recovery of Magnesium in Seawater

  • 조태연 (한국해양대학교 해양과학기술융합학과) ;
  • 김명진 (한국해양대학교 환경공학과)
  • Cho, Taeyeon (Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Kim, Myoung-Jin (Department of Environmental Engineering, Korea Maritime and Ocean University)
  • 투고 : 2016.05.17
  • 심사 : 2016.07.05
  • 발행 : 2016.08.31

초록

본 연구에서는 마그네슘 이온이 포함되어 있는 해수로부터 황산마그네슘 고체를 얻기 위한 실험을 진행하였다. 석출 실험은 마그네슘 회수의 3 단계(침전, 용출, 석출) 과정의 마지막 단계이다. 해수 대비 4배 농축된 마그네슘 용액에 아세톤을 주입하여 석출을 진행하였다. pH가 높을수록, 그리고 아세톤 주입 비율이 높을수록 생성효율이 높아졌다. 용액의 pH가 1.0 ~ 1.5이고, 용액 :아세톤 = 1 : 1.5 (v:v)일 때 99% 이상의 마그네슘이 황산마그네슘 수화물($MgSO_4{\cdot}6H_2O$)로 석출되었다. 석출공정에 사용된 아세톤은 분별증류에 의하여 회수하였다.

The precipitation test, which is the last step of magnesium recovery process consisting of three processes (pre-precipitation, selective dissolution of magnesium, precipitation) is performed to obtain magnesium sulfate powder from seawater. In the study, we succeed in precipitating the magnesium sulfate by adding acetone into the solution of magnesium over 4 times concentrated from seawater. The yield efficiency of magnesium sulfate increases with increasing pH and the ratio of added acetone. More than 99% of magnesium is obtained as magnesium sulfate hydrate ($MgSO_4{\cdot}6H_2O$) under the following conditions; pH 1.0 ~ 1.5, and the ratio of solution and acetone 1 : 1.5 (v:v). The acetone used in the precipitation process is recovered by the fractional distillation.

키워드

참고문헌

  1. Haynes, W.M., Lide, D.R., 2010 : CRC Handbook of Chemistry and Physics 91th Edition (2010-2011), CRC Press Inc.
  2. Shim, J.D., Lee, D.H., 2011 : Microstructure Control, Forming Technologies of Mg alloys and Mg Scrap Recycling, Journal of Korean Institute of Resources Recycling, 20(1), pp.69-79. https://doi.org/10.7844/kirr.2011.20.1.069
  3. Park, H.G., Kang, M.C., 2011 : Current Status on the Domestic Recycling of Magnesium, Journal of Korean Institute of Resources Recycling, 20(3), pp.3-11.
  4. Elsner, D., Rothon, R., 1998 : Magnesium process. U.S. Patent : 5,872,169.
  5. Ozedmir, M., Cakir, D., Kipcak, I., 2009 : Magnesium recovery from magnesite tailings by acid leaching and production of magnesium chloride hexahydrate from leaching solution by evaporation, International Journal of Mineral Processing, 93(2), pp. 209-212. https://doi.org/10.1016/j.minpro.2009.08.001
  6. Wulandari, W., Brooks, G.A., Rhamdhani, M.A., Monaghan, B.J., 2010 : Magnesium: current and alternative production routes, Chemeca: Australasian Conference on Chemical Engineering, p.347.
  7. Mutaz, I.S., Wagialia, K.M., 1990 : Production of magnesium from desalination brines, Resources, Conservation and Recycling, 3, pp.231-239. https://doi.org/10.1016/0921-3449(90)90020-5
  8. Son, D.H., Kim, D.H., Shin, K.J., 2008 : The method for manufacturing magnesium hydroxide having excellent dispersibility for flame retardant, Patent : 10-2008-0109445.
  9. Weast, R.C., 1979 : Handbook of Chemistry and Physics. 60th Edition, CRC Press Inc. p.B-95.
  10. O'Neil, M.J., 2006 : The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 14th Ed, Whitehouse Station, N.J., Merck.
  11. Cho, T.Y., Kim, M.J., 2016 : Method for producing concentrated magnesium solution from seawater using industrial by-products, Journal of the Korean Institute of Resources Recycling, 25(3), pp. 63-73. https://doi.org/10.7844/kirr.2016.25.3.63
  12. Leggett, C.J., Rao, L., 2015 : Complexation of calcium and magnesium with glutarimidedioxime: Implications for the extraction of uranium from seawater, Polyhedron, 95, pp.54-59. https://doi.org/10.1016/j.poly.2015.04.004