DOI QR코드

DOI QR Code

Trends in Recovering Dissolved Boron from Wastewater and Seawater

폐수와 해수로부터 용존 붕소를 회수하는 연구동향

  • Jung, Sungsu (Department of Environmental Engineering, Korea Maritime and Ocean University) ;
  • Kim, Myung-Jin (Department of Environmental Engineering, Korea Maritime and Ocean University)
  • 정성수 (한국해양대학교 환경공학과) ;
  • 김명진 (한국해양대학교 환경공학과)
  • Received : 2016.01.11
  • Accepted : 2016.08.05
  • Published : 2016.08.31

Abstract

A lot of researches have been carried out on the recovery of resources from the seawater all over the world. The boron concentration in seawater is low about at 4.5ppm, but considering the volume of seawater, the total weight of dissolved boron amounts to about 5.4 trillion tons. The boron is an essential resource in about 300 kinds of industries. Korea has imported all of the boron and spent more than 700 billion won each year. In this article, we introduce the domestic and international research trends and technologies for removing or recovering the boron from wastewater and seawater. Most of the researches have been conducted to remove the boron from the desalination process, and to recover the boron mainly from wastewater and brine. The technique for the recovery of the dissolved boron includes the ion exchange, which is the most representative, the adsorption membrane filtration (AMF), solvent extraction, and so on.

전 세계적으로 해수로부터 자원을 회수하기 위한 연구가 활발히 진행되고 있다. 해수 중 붕소농도는 약 4.5ppm로 낮지만 해수 전체의 용량을 고려하면 용존량이 약 5조 4천억 톤에 이른다. 붕소는 300여종의 산업에 필수적으로 사용되는 자원으로 현재 우리나라는 붕소를 전량 수입하고 있고 연간 700억 원 이상을 붕소수입에 지출하고 있다. 본 글에서는 폐수와 해수로부터 붕소를 제거하거나 회수하는 국내 외 연구동향과 관련기술을 소개하였다. 대부분의 연구는 해수담수화 과정에서 붕소를 제거하는 목적으로 진행되었으며, 붕소의 회수는 주로 폐수나 염수에서 이루어졌다. 용존 붕소를 회수하는 기술은 이온교환법이 대표적이며, 흡착-여과막 공법(Adsorption Membrane Filtration, AMF), 용매추출법 등이 있다.

Keywords

References

  1. Roskill, 2010 : Boron: Global industry markets and outlook, Twelfth Edition. ISBN 978 0 86214 561 3, pp. 21-29, Roskill Information Services LTd, London, UK.
  2. Eaton, S. V., 1940 : Effects of boron deficiency and excess on plants, Plant Physiol, 15(1), pp. 95-107. https://doi.org/10.1104/pp.15.1.95
  3. IDA, 2008 : Desalination in 2008 global market napshot, Desalination Data.
  4. Jacob, C., 2007 : Seawater desalination: Boron removal by ion exchange technology, Desalination, 205(1), pp. 47-52. https://doi.org/10.1016/j.desal.2006.06.007
  5. Kabay, N., Yilmaz, I., Yamac, S., Samatya, S., Yuksel, M., Yuksel, U., Arda, M., Saglam, M., Iwanaga, T., Hirowatari, K., 2004 : Removal and recovery of boron from geothermal wastewater by selective ion-exchange resins-I. Laboratory Tests, Reactive & Functional Polymers, 60, pp. 163-170. https://doi.org/10.1016/j.reactfunctpolym.2004.02.020
  6. Yoshihiro, H.V., 2009 : Water and wastewater monitoring(43): Boron recovery system from waste water, Journal of environmental hi-technology, 17(4), pp. 85-89.
  7. Lee, J.C., 2005 : Current status in the recovery of metal value from seawater, The Korean Society of Mineral and Energy Resources Engineers, 42(5), pp. 513-522.
  8. Marston, C., Busch, M. and Prabhakaran, S., 2005 : A boron selective resin for seawater desalination, Proceedings of European Desalination Society Conference on Desalination and the Environment, Santa Margherita Ligure, Italy.
  9. Boncukcuoglu, R., Yilmaz, A.E., Kocakerim, M.M. and Copur, M., 2004 : An empirical model for kinetics of boron removal from boron-containing wastewaters by ion exchange in a batch reactor, Desalination, 160(2), pp. 159-166. https://doi.org/10.1016/S0011-9164(04)90006-9
  10. Jung, B.Y., Kang, S.H., Lee, J.C. and Hwang, T.S., 2006 : Separation reaction characteristics of boron ion by ion exchange method, The Polymer Society Of Korea, 30(1), pp. 45-49.
  11. Hilal. N., Kim. G. J. and Somerfield. C., 2011 : Boron removal from saline water: A comprehensive review, Desalination, 273(1), pp. 23-35. https://doi.org/10.1016/j.desal.2010.05.012
  12. Yan, C., Yi, W., Ma, P., Deng, X. and Li, F., 2008 : Removal of boron from refined brine by using selective ion exchange resins, Journal of Hazardous Materials, 154(1), pp. 564-571. https://doi.org/10.1016/j.jhazmat.2007.10.067
  13. Xu, L., Liu, Y., Hu, H., Wu, Z. and Chen, Q., 2012 : Synthesis, characterization and application of novel silica based adsorbent for boron removal, Desalination, 294, pp. 1-7. https://doi.org/10.1016/j.desal.2012.02.030
  14. Hwang, T.S., Lee, J.H. and Lee, M.J., 2001 : Synthesis of aminated PP-g-styrene fibrous ion-exchanger for separation of boron from ground-water, The Polymer Society Of Korea, 25(4), pp. 451-459.
  15. Cho, S.W. and Kim, M., 2003 : Adsorption characteristic of boron(B) ions by ion-exchange membranes and chelate forming group, The Korean Society of Industrial and Engineering Chemistry, 7(2), pp. 807-810.
  16. Koltuniewicz, A. B., Witek, A. and Bezak, K., 2004 : Efficiency of membrane-sorption integrated processes, Journal of Membrane Science, 239(1), pp. 129-141. https://doi.org/10.1016/j.memsci.2004.02.037
  17. Kabay, N., Bryjak, M., Schlosser, S., Kitis, M., Avlonitis, S., Matejka, Z., Al-Mutaz, I. and Yuksel, M., 2008 : Adsorption-membrane filtration (AMF) hybrid process for boron removal from seawater: an overview, Desalination, 223(1), pp. 38-48. https://doi.org/10.1016/j.desal.2007.01.196
  18. Kabay, N., Sarp, S., Yuksel, M., Arar, O. and Bryjak, M., 2007 : Removal of boron from seawater by selective ion exchange resins, Reactive & Functional Polymers, 67(12), pp. 1643-1650. https://doi.org/10.1016/j.reactfunctpolym.2007.07.033
  19. Kabay, N., Guler, E. and Bryjak, M., 2010 : Boron in seawater and methods for its separation-A review, Desalination, 261(3), pp. 212-217. https://doi.org/10.1016/j.desal.2010.05.033
  20. Kabay, N., Yilmaz, I., Yamac, S., Yuksel, M., Yuksel, U., Yildirim, N., Aydogdu, O., Iwanaga, T. and Hirowatari, K., 2004 : Removal and recovery of boron from geothermal wastewater by selective ion-exchange resins-II. Field tests, Desalination, 167(15), pp. 427-438. https://doi.org/10.1016/j.desal.2004.06.158