References
- 김대현, 강이화 (2010). 고등교육에서 학제성의 개념과 유형에 관한 고찰. 교육사상연구, 24(3), 31-46. (Kim, Dae-Hyun, & Kang, Ew-Ha (2010). Conceptualizations and typologies of interdisciplinarity in higher education. Journal of Korean Educational Idea, 24(3), 31-46.)
- 김민지, 박정규, 이유아, 허은녕 (2011). Co-Classification 방법을 이용한 태양전지 연구의 학제간 다양성 분석. 신재생에너지, 7(1), 36-44. http://dx.doi.org/10.7849/ksnre.2011.7.1.036 (Kim, Min-Ji, Park, Jung-Kyu, Lee, You-Ah, & Heo, Eun-Nyeong (2011). Co-classification analysis of inter-disciplinarity on solar cell research. Journal of the Korean Society for New and Renewable Energy, 7(1), 36-44. http://dx.doi.org/10.7849/ksnre.2011.7.1.036)
- 김완종 (2014). 동시출현 단어분석을 활용한 빅데이터 관련 연구동향 분석. 한국정보관리학회 학술대회 논문집, 17-20. (Kim, Wan-Jong (2014). The research trends about the big data using co-word analysis. Proceedings of the Korean Society for Information Management, 17-20.)
- 김현영, 지현수, 이화순, 지종덕 (2014). 빅 데이터에 따른 지적정보의 효율화 방안 연구. 한국지적정보학회지, 16(1), 29-48. (Kim, Hyun-Young, Ji, Hyun-Soo, Lee, Hwa-Soon, & Ji, Jong-Duck (2014). Big data point according to the study on the efficiency methods of cadastral spatial information. Journal of the Korean Cadastre Information Association, 16(1), 29-48.)
- 이재윤. COOC. (Version 0.4) [Computer Software]. (Lee, Jae-Yun. COOC. (Version 0.4) [Computer Software].)
- 이재윤. WNET. (Version 0.4.1) [Computer Software]. (Lee, Jae-Yun. WNET. (Version 0.4.1) [Computer Software].)
- 이재윤 (2006). 계량서지적 네트워크 분석을 위한 중심성 척도에 관한 연구. 한국문헌정보학회지, 40(3), 191-214. http://dx.doi.org/10.4275/kslis.2006.40.3.191 (Lee, Jae-Yun (2006). Centrality measures for bibliometric network analysis. Journal of the Korean Society for Library and Information Science, 40(3), 191-214. http://dx.doi.org/10.4275/kslis.2006.40.3.191)
- 이재윤, 정주희 (2006). 연구자 소속과 표제어 분석을 통한 국내 인지과학 분야의 학제적 구조 파악. 제13회 한국정보관리학회 학술대회 논문집, 127-134. (Lee, Jae-Yun, & Jung, Ju-Hee (2006). Examining the interdisciplinary structure of Korean cognitive science through analyzing author affiliations and title words. Proceedings of the 13th Korean Society for Information Management, 127-134.)
- 이정미 (2013). 빅데이터의 이해와 도서관 정보서비스에의 활용. 한국비블리아학회지, 24(4), 53-73. http://dx.doi.org/10.14699/kbiblia.2013.24.4.053 (Lee, Jeong-Mee (2013). Understanding big data and utilizing its analysis into library and information services. Journal of the Korean Biblia Society for Library and Information Science, 24(4), 53-73. http://dx.doi.org/10.14699/kbiblia.2013.24.4.053)
- 정은경 (2011). 디지털도서관 분야의 학제적 공동연구 분석에 관한 연구. 정보관리학회지, 28(2), 37-51. http://dx.doi.org/10.3743/kosim.2011.28.2.037 (Chung, Eun-Kyung (2011). Interdisciplinary collaborations in the domain of digital libraries. Journal of the Korean Society for Information Management, 28(2), 37-51. http://dx.doi.org/10.3743/kosim.2011.28.2.037)
- 정연경 (2012). 국내 기록관리학 분야 학술지에 나타난 학제성 연구. 한국기록관리학회지, 12(2), 7-27. (Chung, Yeon-Kyoung (2012). A study of interdisciplinarity in Journal of Korean Society of Archives and Records Management. Journal of Korean Society of Archives and Records Management, 12(2), 7-27.)
- Bartol, T., Budimir, G., Dekleva-Smrekar, D., Pusnik, M., & Juznic, P. (2014). Assessment of research fields in Scopus and Web of Science in the view of national research evaluation in Slovenia. Scientometrics, 98(2), 1491-1504. http://dx.doi.org/10.1007/s11192-013-1148-8
- Gartner (2012). Gartner Identifies the Top 10 Strategic Technology Trends for 2013. Retrieved from http://www.gartner.com/newsroom/id/2209615
- Hargens, L. L. (1986). Migration patterns of U.S. Ph.D.s among disciplines and specialties. Scientometrics, 9(3-4), 145-164. http://dx.doi.org/10.1007/bf02017238
- Huang, Y., Zhang, Y., Youtie, J., Porter, A. L., & Wang, X. (2016). How does national scientific funding support emerging interdisciplinary research: A comparison study of big data research in the US and China. PLoS ONE, 11(5), e0154509. http://dx.doi.org/10.1371/journal.pone.0154509
- Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58(9), 1303-1319. http://dx.doi.org/10.1002/asi.20614
- Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. Retrieved from http://www.mckinsey.com/business-functions/business-technology/our-insights/big-data-the-next-frontier-for-innovatio
- McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60-66.
- Morillo, F., Bordons, M., & Gomez, I. (2001). An approach to interdisciplinarity through bibliometric indicators. Scientometrics, 51(1), 203-222. https://doi.org/10.1023/A:1010529114941
- Morillo, F., Bordons, M., & Gomez, I. (2003). Interdisciplinarity in science: A tentative typology of disciplines and research areas. Journal of the American Society for Information Science and Technology, 54(13), 1237-1249. https://doi.org/10.1002/asi.10326
- National Academies Committee on Facilitating Interdisciplinary Research, Committee on Science, Engineering, Public Policy (COSEPUP) (2005). Facilitating interdisciplinary research. Washington: National Academies Press.
- OECD (1998). Interdisciplinarity in Science and Technology. T. Directorate for Science, and Industry. Paris: OECD. Quoted in: Morillo, F., Bordons, M., & Gomez, I. (2003). Interdisciplinarity in science: A tentative typology of disciplines and research areas. Journal of the American Society for Information Science and Technology, 54(13), 1237-1249.
- Park, H. W., & Leydesdorff, L. (2013). Decomposing social and semantic networks in emerging "big data" research. Journal of Informetrics, 7(3), 756-765. http://dx.doi.org/10.1016/j.joi.2013.05.004
- Qin, J., Lancaster, F. W., & Allen, B. (1997). Types and levels of collaboration in interdisciplinary research in the sciences. Journal of the American Society for Information Science, 48(10), 893-916. http://dx.doi.org/10.1002/(sici)1097-4571(199710)48:10<893::aid-asi5>3.0.co;2-x
- Rousseau, R. (2012). A view on big data and its relation to Informetrics. Chinese Journal of Library and Information Science, 5(3), 12-26.
- Shiri, A. (2014). Making sense of big data: A facet analysis approach. Knowledge Organization, 41(5), 357-368. https://doi.org/10.5771/0943-7444-2014-5-357
- Small, H. (2010). Maps of science as interdisciplinary discourse: Co-citation contexts and the role of analogy. Scientometrics, 83(3), 835-849. http://dx.doi.org/10.1007/s11192-009-0121-z
- Steele, T. W., & Stier, J. C. (2000). The impact of interdisciplinary research in the environmental sciences: A forestry case study. Journal of the American Society for Information Science, 51(5), 476-484. http://dx.doi.org/10.1002/(sici)1097-4571(2000)51:5<476::aid-asi8>3.0.co;2-g
- Urata, H. (1990). Information flows among academic disciplines in Japan. Scientometrics, 18(3-4), 309-319. http://dx.doi.org/10.1007/bf02017767
- Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., … Borner, K. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 5(1), 14-26. http://dx.doi.org/10.1016/j.joi.2010.06.004
- Yang, R. (2013). Bibliometrical analysis on the big data research in China. Journal of Digital Information Management, 11(6), 383-390.