DOI QR코드

DOI QR Code

A Study on Interdisciplinary Structure of Big Data Research with Journal-Level Bibliographic-Coupling Analysis

학술지 단위 서지결합분석을 통한 빅데이터 연구분야의 학제적 구조에 관한 연구

  • 이보람 (이화여자대학교 일반대학원 문헌정보학과) ;
  • 정은경 (이화여자대학교 사회과학대학 문헌정보학 전공)
  • Received : 2016.08.17
  • Accepted : 2016.09.05
  • Published : 2016.09.30

Abstract

Interdisciplinary approach has been recognized as one of key strategies to address various and complex research problems in modern science. The purpose of this study is to investigate the interdisciplinary characteristics and structure of the field of big data. Among the 1,083 journals related to the field of big data, multiple Subject Categories (SC) from the Web of Science were assigned to 420 journals (38.8%) and 239 journals (22.1%) were assigned with the SCs from different fields. These results show that the field of big data indicates the characteristics of interdisciplinarity. In addition, through bibliographic coupling network analysis of top 56 journals, 10 clusters in the network were recognized. Among the 10 clusters, 7 clusters were from computer science field focusing on technical aspects such as storing, processing and analyzing the data. The results of cluster analysis also identified multiple research works of analyzing and utilizing big data in various fields such as science & technology, engineering, communication, law, geography, bio-engineering and etc. Finally, with measuring three types of centrality (betweenness centrality, nearest centrality, triangle betweenness centrality) of journals, computer science journals appeared to have strong impact and subjective relations to other fields in the network.

현대사회의 다양하고 복잡한 문제들을 해결하기 위해 학문영역을 넘나드는 학제적 연구가 등장하게 되었다. 본 연구에서는 최근 다양한 영역에서 주목 받고 있는 빅데이터 분야를 대상으로 학제성을 규명하고 학제적 구조를 파악하고자 하였다. 이를 위해 빅데이터를 다룬 학술지 총 1,083종의 데이터를 수집하였다. 이 중 420종(38.8%)의 학술지에 둘 이상의 Web of Science SC범주가 부여되었고, 239종(22.1%)에 부여된 SC범주는 상이한 학문영역에 속하여 빅데이터 분야의 비교적 높은 학제성을 확인할 수 있었다. 이와 함께 논문 게재 상위 56종의 학술지를 대상으로 서지결합분석 네트워크를 생성한 결과 총 10개의 군집이 나타났다. 10개 군집 중 7개 군집이 컴퓨터공학 분야에 해당하여 대부분의 연구가 빅데이터의 저장, 처리, 분석 등 기술적인 부분에 집중되어 있었다. 이외에도 군집분석을 통해 과학기술, 공학, 커뮤니케이션, 법학, 지리학, 생명공학 등 다양한 분야에서 빅데이터의 분석과 활용에 관한 연구가 이루어지고 있음을 확인할 수 있었다. 마지막으로 네트워크에서 매개중심성, 최근접중심성, 삼각매개중심성을 측정한 결과 컴퓨터공학 분야의 학술지들이 네트워크에 미치는 영향력이 크고 주제적 연관성이 강한 것으로 나타났다.

Keywords

References

  1. 김대현, 강이화 (2010). 고등교육에서 학제성의 개념과 유형에 관한 고찰. 교육사상연구, 24(3), 31-46. (Kim, Dae-Hyun, & Kang, Ew-Ha (2010). Conceptualizations and typologies of interdisciplinarity in higher education. Journal of Korean Educational Idea, 24(3), 31-46.)
  2. 김민지, 박정규, 이유아, 허은녕 (2011). Co-Classification 방법을 이용한 태양전지 연구의 학제간 다양성 분석. 신재생에너지, 7(1), 36-44. http://dx.doi.org/10.7849/ksnre.2011.7.1.036 (Kim, Min-Ji, Park, Jung-Kyu, Lee, You-Ah, & Heo, Eun-Nyeong (2011). Co-classification analysis of inter-disciplinarity on solar cell research. Journal of the Korean Society for New and Renewable Energy, 7(1), 36-44. http://dx.doi.org/10.7849/ksnre.2011.7.1.036)
  3. 김완종 (2014). 동시출현 단어분석을 활용한 빅데이터 관련 연구동향 분석. 한국정보관리학회 학술대회 논문집, 17-20. (Kim, Wan-Jong (2014). The research trends about the big data using co-word analysis. Proceedings of the Korean Society for Information Management, 17-20.)
  4. 김현영, 지현수, 이화순, 지종덕 (2014). 빅 데이터에 따른 지적정보의 효율화 방안 연구. 한국지적정보학회지, 16(1), 29-48. (Kim, Hyun-Young, Ji, Hyun-Soo, Lee, Hwa-Soon, & Ji, Jong-Duck (2014). Big data point according to the study on the efficiency methods of cadastral spatial information. Journal of the Korean Cadastre Information Association, 16(1), 29-48.)
  5. 이재윤. COOC. (Version 0.4) [Computer Software]. (Lee, Jae-Yun. COOC. (Version 0.4) [Computer Software].)
  6. 이재윤. WNET. (Version 0.4.1) [Computer Software]. (Lee, Jae-Yun. WNET. (Version 0.4.1) [Computer Software].)
  7. 이재윤 (2006). 계량서지적 네트워크 분석을 위한 중심성 척도에 관한 연구. 한국문헌정보학회지, 40(3), 191-214. http://dx.doi.org/10.4275/kslis.2006.40.3.191 (Lee, Jae-Yun (2006). Centrality measures for bibliometric network analysis. Journal of the Korean Society for Library and Information Science, 40(3), 191-214. http://dx.doi.org/10.4275/kslis.2006.40.3.191)
  8. 이재윤, 정주희 (2006). 연구자 소속과 표제어 분석을 통한 국내 인지과학 분야의 학제적 구조 파악. 제13회 한국정보관리학회 학술대회 논문집, 127-134. (Lee, Jae-Yun, & Jung, Ju-Hee (2006). Examining the interdisciplinary structure of Korean cognitive science through analyzing author affiliations and title words. Proceedings of the 13th Korean Society for Information Management, 127-134.)
  9. 이정미 (2013). 빅데이터의 이해와 도서관 정보서비스에의 활용. 한국비블리아학회지, 24(4), 53-73. http://dx.doi.org/10.14699/kbiblia.2013.24.4.053 (Lee, Jeong-Mee (2013). Understanding big data and utilizing its analysis into library and information services. Journal of the Korean Biblia Society for Library and Information Science, 24(4), 53-73. http://dx.doi.org/10.14699/kbiblia.2013.24.4.053)
  10. 정은경 (2011). 디지털도서관 분야의 학제적 공동연구 분석에 관한 연구. 정보관리학회지, 28(2), 37-51. http://dx.doi.org/10.3743/kosim.2011.28.2.037 (Chung, Eun-Kyung (2011). Interdisciplinary collaborations in the domain of digital libraries. Journal of the Korean Society for Information Management, 28(2), 37-51. http://dx.doi.org/10.3743/kosim.2011.28.2.037)
  11. 정연경 (2012). 국내 기록관리학 분야 학술지에 나타난 학제성 연구. 한국기록관리학회지, 12(2), 7-27. (Chung, Yeon-Kyoung (2012). A study of interdisciplinarity in Journal of Korean Society of Archives and Records Management. Journal of Korean Society of Archives and Records Management, 12(2), 7-27.)
  12. Bartol, T., Budimir, G., Dekleva-Smrekar, D., Pusnik, M., & Juznic, P. (2014). Assessment of research fields in Scopus and Web of Science in the view of national research evaluation in Slovenia. Scientometrics, 98(2), 1491-1504. http://dx.doi.org/10.1007/s11192-013-1148-8
  13. Gartner (2012). Gartner Identifies the Top 10 Strategic Technology Trends for 2013. Retrieved from http://www.gartner.com/newsroom/id/2209615
  14. Hargens, L. L. (1986). Migration patterns of U.S. Ph.D.s among disciplines and specialties. Scientometrics, 9(3-4), 145-164. http://dx.doi.org/10.1007/bf02017238
  15. Huang, Y., Zhang, Y., Youtie, J., Porter, A. L., & Wang, X. (2016). How does national scientific funding support emerging interdisciplinary research: A comparison study of big data research in the US and China. PLoS ONE, 11(5), e0154509. http://dx.doi.org/10.1371/journal.pone.0154509
  16. Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58(9), 1303-1319. http://dx.doi.org/10.1002/asi.20614
  17. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. Retrieved from http://www.mckinsey.com/business-functions/business-technology/our-insights/big-data-the-next-frontier-for-innovatio
  18. McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60-66.
  19. Morillo, F., Bordons, M., & Gomez, I. (2001). An approach to interdisciplinarity through bibliometric indicators. Scientometrics, 51(1), 203-222. https://doi.org/10.1023/A:1010529114941
  20. Morillo, F., Bordons, M., & Gomez, I. (2003). Interdisciplinarity in science: A tentative typology of disciplines and research areas. Journal of the American Society for Information Science and Technology, 54(13), 1237-1249. https://doi.org/10.1002/asi.10326
  21. National Academies Committee on Facilitating Interdisciplinary Research, Committee on Science, Engineering, Public Policy (COSEPUP) (2005). Facilitating interdisciplinary research. Washington: National Academies Press.
  22. OECD (1998). Interdisciplinarity in Science and Technology. T. Directorate for Science, and Industry. Paris: OECD. Quoted in: Morillo, F., Bordons, M., & Gomez, I. (2003). Interdisciplinarity in science: A tentative typology of disciplines and research areas. Journal of the American Society for Information Science and Technology, 54(13), 1237-1249.
  23. Park, H. W., & Leydesdorff, L. (2013). Decomposing social and semantic networks in emerging "big data" research. Journal of Informetrics, 7(3), 756-765. http://dx.doi.org/10.1016/j.joi.2013.05.004
  24. Qin, J., Lancaster, F. W., & Allen, B. (1997). Types and levels of collaboration in interdisciplinary research in the sciences. Journal of the American Society for Information Science, 48(10), 893-916. http://dx.doi.org/10.1002/(sici)1097-4571(199710)48:10<893::aid-asi5>3.0.co;2-x
  25. Rousseau, R. (2012). A view on big data and its relation to Informetrics. Chinese Journal of Library and Information Science, 5(3), 12-26.
  26. Shiri, A. (2014). Making sense of big data: A facet analysis approach. Knowledge Organization, 41(5), 357-368. https://doi.org/10.5771/0943-7444-2014-5-357
  27. Small, H. (2010). Maps of science as interdisciplinary discourse: Co-citation contexts and the role of analogy. Scientometrics, 83(3), 835-849. http://dx.doi.org/10.1007/s11192-009-0121-z
  28. Steele, T. W., & Stier, J. C. (2000). The impact of interdisciplinary research in the environmental sciences: A forestry case study. Journal of the American Society for Information Science, 51(5), 476-484. http://dx.doi.org/10.1002/(sici)1097-4571(2000)51:5<476::aid-asi8>3.0.co;2-g
  29. Urata, H. (1990). Information flows among academic disciplines in Japan. Scientometrics, 18(3-4), 309-319. http://dx.doi.org/10.1007/bf02017767
  30. Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., … Borner, K. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 5(1), 14-26. http://dx.doi.org/10.1016/j.joi.2010.06.004
  31. Yang, R. (2013). Bibliometrical analysis on the big data research in China. Journal of Digital Information Management, 11(6), 383-390.