DOI QR코드

DOI QR Code

안테나 당 전력 제한 조건을 갖는 다중-입력 단일-출력 브로드캐스트 채널에서의 저복잡도 제로포싱 프리코더 설계

Low Complexity Zero-Forcing Precoder Design for MISO Broadcast Channels Under Per-Antenna Power Constraints

  • Park, Hongseok (Yonsei University, School of Electrical and Electronic Engineering) ;
  • Jang, Jinyoung (Yonsei University, School of Electrical and Electronic Engineering) ;
  • Jeon, Sang-Woon (Andong National University, Department of Information and Communication Engineering) ;
  • Chae, Hyukjin (Advanced Communication Technology R&D Laboratory, LG Electronics) ;
  • Cha, Hyun-Su (Yonsei University, School of Electrical and Electronic Engineering) ;
  • Kim, Donghyun (Agency for Defense Developent, The 2nd R&D Institute) ;
  • Kim, Dong Ku (Yonsei University, School of Electrical and Electronic Engineering)
  • 투고 : 2016.07.01
  • 심사 : 2016.09.08
  • 발행 : 2016.09.30

초록

안테나 당 전력 제한 조건을 갖는 K 사용자 다중-입력 단일-출력 브로드캐스트 채널을 고려한다. 즉, 각각의 송신 안테나가 개별적인 전력 제한 조건을 만족해야한다. 송신 안테나 수 M이 K보다 클 때의 저복잡도 제로포싱 프리코더를 제안한다. 제안하는 프리코더 설계기법은 최적 제로포싱 프리코더가 달성하는 합 전송률에 근접하는 전송률을 달성하며 동시에 프리코더 설계의 복잡도를 현저히 감소시킬 수 있다.

The K-user multiple-input single-output broadcast channel is considered under per-antenna power constraints, i. e., each transmit antenna must satisfy its own power constraints. A low complexity zeroforcing(ZF) precoder is proposed when the number of transmit antennas M is greater than K. The proposed precoder design significantly reduces computational complexity for the precoder construction while attaining the sum spectral efficiency close to that achievable by the optimal ZF precoder.

키워드

참고문헌

  1. S. Sesia, I. Toufik, and M. Baker, LTE: The UMTS long term evolution: From theory to pracice, New York, NY, USA: Wiley, 2009.
  2. E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Commun. Mag., vol. 52, no. 2, pp. 186-195, Feb. 2014. https://doi.org/10.1109/MCOM.2014.6736761
  3. Y. Kim, et al., "Full dimension MIMO (FD-MIMO): The next evolution of MIMO in LTE systems," IEEE Wireless Commun. Mag., vol. 21, no. 3, pp. 92-100, Jun. 2014. https://doi.org/10.1109/MWC.2014.6845053
  4. Y. Ryu, et al., "Aeronautical link availability analysis for the multi-platform image & intelligence common data link," J. KICS, vol. 37C, no. 10, pp. 965-976, Oct. 2012. https://doi.org/10.7840/kics.2012.37C.10.965
  5. A. Wiesel, Y. Eldar, and S. Shamai, "Zero-forcing precoding and generalized inverses," IEEE Trans. Sign. Process., vol. 56, no. 9, pp. 4409-4418, Sept. 2008. https://doi.org/10.1109/TSP.2008.924638
  6. R. Zhang, "Cooperative multi-cell block diagonalization with per-base-station power constraints," IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1435-1445, Dec. 2010. https://doi.org/10.1109/JSAC.2010.101205
  7. J. Jang, S.-W. Jeon, H. Chae, H.-S. Cha, and D. K. Kim, "Low complexity zeroforcing precoder design under per-antenna power constraints," IEEE Commun. Lett., vol. 19, no. 9, pp. 1556-1559, Sept. 2015. https://doi.org/10.1109/LCOMM.2015.2431252
  8. F. Boccardi and H. Huang, "Optimum power allocation for the MIMO-BC zero-forcing precoder with per-antenna power constraints," in Proc. 40th Annu. CISS, vol. 3, Princeton, NJ, USA, Mar. 2006.
  9. L. Vandenberghe, S. Boyd, and S. po Wu, "Determinant maximization with linear matrix inequality constraints," SIAM J. Matrix Anal. Appl., vol. 19, no. 2, pp. 499-533, 1998. https://doi.org/10.1137/S0895479896303430
  10. H. Park, J. Jang, J.-N. Shim, B.-Y. Min, J. Youn, and D. K. Kim, "Multi-cell joint generalized zeroforcing precoder design under per base station power constraints," in Proc. KICS Winter Conf., pp. 1257-1258, Jeju Island, Korea, Jan. 2016.
  11. W. Li and M. Latva-aho, "An efficient channel block diagonalization method for generalized zero forcing assisted MIMO broadcasting systems," IEEE Trans. Wireless Commun., vol. 10, no. 3, pp. 739-744, Mar. 2011. https://doi.org/10.1109/TWC.2010.120310.100567