참고문헌
- Bellman, R. E. (2015), Adaptive Control Processes : A Guided Tour, Princeton university press.
- Blum, A. L. and Langley, P. (1997), Selection of relevant features and examples in machine learning, Artificial Intelligence, 97(1), 245-271. https://doi.org/10.1016/S0004-3702(97)00063-5
- Chatterjee, S. and Hadi, A. S. (2015), Regression Analysis by Example, John Wiley and Sons.
- Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014), Do we need hundreds of classifiers to solve real world classification problems, J. Mach. Learn. Res, 15(1), 3133-3181.
- Guyon, I. and Elisseeff, A. (2003), An introduction to variable and feature selection, The Journal of Machine Learning Research, 3, 1157-1182.
- Hoerl, A. E. and Kennard, R. W. (1970), Ridge regression : Biased estimation for non orthogonal problems, Technometrics, 12(1), 55-67. https://doi.org/10.1080/00401706.1970.10488634
- James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013), An Introduction to Statistical Learning, New York : springer, 112.
- Kang, P., Lee, H., Cho, S., Kim, D., Park, J., and Park, C.-K. (2009), A virtual metrology system for semiconductor manufacturing, Expert Systems with Applications, 36(11), 12554-12561. https://doi.org/10.1016/j.eswa.2009.05.053
- Kang, P., Kim, D., Lee, H., Doh, S., and Cho, S. (2011), Virtual metrology for run-to-run control in semiconductor manufacturing, Expert Systems with Applications, 38(3), 2508-2522. https://doi.org/10.1016/j.eswa.2010.08.040
- Kim, D., Kang, P., Lee, S.-K., Kang, S., Doh, S., and Cho, S. (2015), Improvement of virtual metrology performance by removing metrology noises in a training dataset, Pattern Analysis and Applications, 18(1), 173-189. https://doi.org/10.1007/s10044-013-0363-5
- Kohavi, R. and John, G. H. (1997), Wrappers for feature subset selection, Artificial intelligence, 97(1), 273-324. https://doi.org/10.1016/S0004-3702(97)00043-X
- Lastovicka, J. L. and Sirianni, N. J. (2011), Truly, madly, deeply : Consumers in the throes of material possession love, Journal of Consumer Research, 38(2), 323-342. https://doi.org/10.1086/658338
- Lee, H., Kim, S. G., Park, H.-W., and Kang, P. (2014), Pre-launch new product demand forecasting using the Bass model : A statistical and machine learning-based approach, Technological Forecasting and Social Change, 86, 49-64. https://doi.org/10.1016/j.techfore.2013.08.020
- Madhuri, V. H. and Rani, T. S. (2015), Ranking and dimensionality reduction using biclustering, In Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing (FANCCO), 209-226.
- Mallick, H. and Yi, N. (2013), Bayesian methods for high dimensional linear models, Journal of Biometrics and Biostatistics, 1(5).
- Ross, S. M. (2004), Introduction to Probability and Statistic for Engineers and Scientists, Academic Press.
- Shumway, R. H. and Stoffer, D. S. (2010), Time series analysis and its applications : with R examples, Springer Science and Business Media.
- Smialowski, P., Frishman, D., and Kramer, S. (2010), Pitfalls of supervised feature selection, Bioinformatics, 26(3), 440-443. https://doi.org/10.1093/bioinformatics/btp621
- Tibshirani, R. (1996), Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B (Methodological), 267-288.
- Yang, J. and Honavar, V. (1998), Feature subset selection using a genetic algorithm, IEEE Intelligent Systems and Their Applications, 13(2), 44-49. https://doi.org/10.1109/5254.671091