Aggression and Neurotransmitters

공격성과 신경전달물질

  • Yu, Si Young (Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University) ;
  • Choi, Yejee (Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University) ;
  • Kim, Sangjoon (Kim Sangjoon Law Firm) ;
  • Jeong, Hyeonseok S. (Department of Radiology, Incheon St. Mary's Hospital, The Catholic University of Korea) ;
  • Ma, Jiyoung (Ewha Brain Institute, Ewha Womans University) ;
  • Kim, Young Hoon (Ewha Brain Institute, Ewha Womans University) ;
  • Moon, Sohyeon (Ewha Brain Institute, Ewha Womans University) ;
  • Kang, Ilhyang (Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University) ;
  • Jeong, Eujin (Ewha Brain Institute, Ewha Womans University) ;
  • Suh, Chae Won (Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University) ;
  • Shin, Kyung-Shik (School of Business, Ewha Womans University) ;
  • Kim, Jieun E. (Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University)
  • 유시영 (이화여자대학교 스크랜튼대학 뇌.인지과학과) ;
  • 최예지 (이화여자대학교 스크랜튼대학 뇌.인지과학과) ;
  • 김상준 (김상준 변호무소) ;
  • 정현석 (가톨릭대학교 인천성모병원 영상의학과) ;
  • 마지영 (이화여자대학교 뇌융합과학연구원) ;
  • 김영훈 (이화여자대학교 뇌융합과학연구원) ;
  • 문소현 (이화여자대학교 뇌융합과학연구원) ;
  • 강일향 (이화여자대학교 스크랜튼대학 뇌.인지과학과) ;
  • 정유진 (이화여자대학교 뇌융합과학연구원) ;
  • 서채원 (이화여자대학교 스크랜튼대학 뇌.인지과학과) ;
  • 신경식 (이화여자대학교 경영대학) ;
  • 김지은 (이화여자대학교 스크랜튼대학 뇌.인지과학과)
  • Received : 2016.06.07
  • Accepted : 2016.07.26
  • Published : 2016.08.31

Abstract

Aggression and aggressive behaviors, often explained as harmful social interaction with the intention of hurting or inflicting damage upon another, have been considered as an adaptive mechanism from the evolutionary psychological point of view. However, various studies on aggression and aggressive behaviors have been done with psychopathological approach as the extreme aggressive behaviors may harm themselves and others at the same time. Recently, researchers have attempted to explain aggression in terms of neurobiological substrates rather than based on traditional psychopathological and/or behavioral concept. In this regard, there have been findings of differences in neurotransmitters and their receptors, and genetic polymorphisms. In this review article, we provide a brief overview of the literature about seven most frequently reported neurotransmitters including neurohormones (serotonin, norepinephrine, dopamine, gamma-aminobutyric acid, nitric oxide, oxytocin and vasopressin) and an associated enzyme (monoamine oxidase A), which are known to be related with aggression and aggressive behaviors.

Keywords

References

  1. Moyer KE. The Physiology of Hostility. Chicago: Markham;1971.
  2. Dollard J, Doob LW, Miller NE, Mowrer OH, Sears RR, Yale University. Frustration and aggression. New Haven: Pub. for the Institute of Human Relations by Yale University Press;1939.
  3. Eron LD, Walder LO, Lefkowitz MM. Learning of aggression in children. Boston: Little;1971.
  4. Buss DM, Shackelford TK. Human aggression in evolutionary psychological perspective. Clin Psychol Rev 1997;17:605-619. https://doi.org/10.1016/S0272-7358(97)00037-8
  5. Kim CH, Kim JW. Neurobiology of aggression. Korean J Psychopharmacol 1998;9:3-18.
  6. Kim KW, An ES, Lee YS, Park SC. Neurobiology of aggression. Korean J Biol Psychiatry 2013;20:129-135.
  7. Nelson RJ, Trainor BC. Neural mechanisms of aggression. Nat Rev Neurosci 2007;8:536-546. https://doi.org/10.1038/nrn2174
  8. Trainor BC, Workman JL, Jessen R, Nelson RJ. Impaired nitric oxide synthase signaling dissociates social investigation and aggression. Behav Neurosci 2007;121:362-369. https://doi.org/10.1037/0735-7044.121.2.362
  9. Mavani GP, DeVita MV, Michelis MF. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front Med (Lausanne) 2015;2:19.
  10. Bosch OJ, Neumann ID. Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav 2012;61:293-303. https://doi.org/10.1016/j.yhbeh.2011.11.002
  11. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 1993;262:578-580. https://doi.org/10.1126/science.8211186
  12. Heils A, Teufel A, Petri S, Seemann M, Bengel D, Balling U, et al. Functional promoter and polyadenylation site mapping of the human serotonin (5-HT) transporter gene. J Neural Transm Gen Sect 1995;102:247-254. https://doi.org/10.1007/BF01281159
  13. Hanna GL, Himle JA, Curtis GC, Koram DQ, Veenstra-Vander-Weele J, Leventhal BL, et al. Serotonin transporter and seasonal variation in blood serotonin in families with obsessive-compulsive disorder. Neuropsychopharmacology 1998;18:102-111. https://doi.org/10.1016/S0893-133X(97)00097-3
  14. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 2002;297:400-403. https://doi.org/10.1126/science.1071829
  15. Ramboz S, Saudou F, Amara DA, Belzung C, Segu L, Misslin R, et al. 5-HT1B receptor knock out--behavioral consequences. Behav Brain Res 1996;73:305-312.
  16. Coccaro EF. Central serotonin and impulsive aggression. Br J Psychiatry Suppl 1989;(8):52-62.
  17. Virkkunen M, Nuutila A, Goodwin FK, Linnoila M. Cerebrospinal fluid monoamine metabolite levels in male arsonists. Arch Gen Psychiatry 1987;44:241-247. https://doi.org/10.1001/archpsyc.1987.01800150053007
  18. Miczek KA, Fish EW, De Bold JF, De Almeida RM. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology (Berl) 2002;163:434-458. https://doi.org/10.1007/s00213-002-1139-6
  19. de Boer SF, Koolhaas JM. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 2005;526:125-139. https://doi.org/10.1016/j.ejphar.2005.09.065
  20. Newman EL, Smith KS, Takahashi A, Chu A, Hwa LS, Chen Y, et al. ${\alpha}2$-containing GABA(A) receptors: a requirement for midazolamescalated aggression and social approach in mice. Psychopharmacology (Berl) 2015;232:4359-4369. https://doi.org/10.1007/s00213-015-4069-9
  21. Uusi-Oukari M, Korpi ER. Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev 2010;62:97-135. https://doi.org/10.1124/pr.109.002063
  22. Cryan JF, Slattery DA. GABAB receptors and depression. Current status. Adv Pharmacol 2010;58:427-451.
  23. Vlachou S, Markou A. GABAB receptors in reward processes. Adv Pharmacol 2010;58:315-371.
  24. Takahashi A, Shimamoto A, Boyson CO, DeBold JF, Miczek KA. GABA(B) receptor modulation of serotonin neurons in the dorsal raphe nucleus and escalation of aggression in mice. J Neurosci 2010;30:11771-11780. https://doi.org/10.1523/JNEUROSCI.1814-10.2010
  25. Miczek KA, DeBold JF, Hwa LS, Newman EL, de Almeida RM. Alcohol and violence: neuropeptidergic modulation of monoamine systems. Ann N Y Acad Sci 2015;1349:96-118. https://doi.org/10.1111/nyas.12862
  26. Patki G, Atrooz F, Alkadhi I, Solanki N, Salim S. High aggression in rats is associated with elevated stress, anxiety-like behavior, and altered catecholamine content in the brain. Neurosci Lett 2015;584:308-313. https://doi.org/10.1016/j.neulet.2014.10.051
  27. Thomas SA, Matsumoto AM, Palmiter RD. Noradrenaline is essential for mouse fetal development. Nature 1995;374:643-646. https://doi.org/10.1038/374643a0
  28. Thomas SA, Marck BT, Palmiter RD, Matsumoto AM. Restoration of norepinephrine and reversal of phenotypes in mice lacking dopamine beta-hydroxylase. J Neurochem 1998;70:2468-2476.
  29. Marino MD, Bourdelat-Parks BN, Cameron Liles L, Weinshenker D. Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 2005;161:197-203. https://doi.org/10.1016/j.bbr.2005.02.005
  30. Matsumoto K, Ojima K, Watanabe H. Noradrenergic denervation attenuates desipramine enhancement of aggressive behavior in isolated mice. Pharmacol Biochem Behav 1995;50:481-484.
  31. Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M. Adrenergic alpha2C-receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice. J Neurosci 1998;18:3035-3042. https://doi.org/10.1523/JNEUROSCI.18-08-03035.1998
  32. Haller J, Makara GB, Kruk MR. Catecholaminergic involvement in the control of aggression: hormones, the peripheral sympathetic, and central noradrenergic systems. Neurosci Biobehav Rev 1998;22:85-97.
  33. Ferrari PF, van Erp AM, Tornatzky W, Miczek KA. Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur J Neurosci 2003;17:371-378. https://doi.org/10.1046/j.1460-9568.2003.02447.x
  34. Miczek KA, Faccidomo S, De Almeida RM, Bannai M, Fish EW, Debold JF. Escalated aggressive behavior: new pharmacotherapeutic approaches and opportunities. Ann N Y Acad Sci 2004;1036:336-355.
  35. de Almeida RM, Ferrari PF, Parmigiani S, Miczek KA. Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol 2005;526:51-64. https://doi.org/10.1016/j.ejphar.2005.10.004
  36. Rodriguiz RM, Chu R, Caron MG, Wetsel WC. Aberrant responses in social interaction of dopamine transporter knockout mice. Behav Brain Res 2004;148:185-198. https://doi.org/10.1016/S0166-4328(03)00187-6
  37. Reif A, Jacob CP, Rujescu D, Herterich S, Lang S, Gutknecht L, et al. Influence of functional variant of neuronal nitric oxide synthase on impulsive behaviors in humans. Arch Gen Psychiatry 2009;66:41-50. https://doi.org/10.1001/archgenpsychiatry.2008.510
  38. Reif A, Kiive E, Kurrikoff T, Paaver M, Herterich S, Konstabel K, et al. A functional NOS1 promoter polymorphism interacts with adverse environment on functional and dysfunctional impulsivity. Psychopharmacology (Berl) 2011;214:239-248. https://doi.org/10.1007/s00213-010-1915-7
  39. Chiavegatto S, Dawson VL, Mamounas LA, Koliatsos VE, Dawson TM, Nelson RJ. Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc Natl Acad Sci U S A 2001;98:1277-1281. https://doi.org/10.1073/pnas.98.3.1277
  40. Ramirez-Bermudez J, Perez-Neri I, Montes S, Ramirez-Abascal M, Nente F, Abundes-Corona A, et al. Imbalance between nitric oxide and dopamine may underly aggression in acute neurological patients. Neurochem Res 2010;35:1659-1665. https://doi.org/10.1007/s11064-010-0227-y
  41. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, et al. Role of genotype in the cycle of violence in maltreated children. Science 2002;297:851-854. https://doi.org/10.1126/science.1072290
  42. Beitchman JH, Mik HM, Ehtesham S, Douglas L, Kennedy JL. MAOA and persistent, pervasive childhood aggression. Mol Psychiatry 2004;9:546-547. https://doi.org/10.1038/sj.mp.4001492
  43. Piton A, Poquet H, Redin C, Masurel A, Lauer J, Muller J, et al. 20 ans apres: a second mutation in MAOA identified by targeted highthroughput sequencing in a family with altered behavior and cognition. Eur J Hum Genet 2014;22:776-783. https://doi.org/10.1038/ejhg.2013.243
  44. Jonsson EG, Norton N, Gustavsson JP, Oreland L, Owen MJ, Sedvall GC. A promoter polymorphism in the monoamine oxidase A gene and its relationships to monoamine metabolite concentrations in CSF of healthy volunteers. J Psychiatr Res 2000;34:239-244. https://doi.org/10.1016/S0022-3956(00)00013-3
  45. Bosch OJ, Meddle SL, Beiderbeck DI, Douglas AJ, Neumann ID. Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci 2005;25:6807-6815. https://doi.org/10.1523/JNEUROSCI.1342-05.2005
  46. Bosch O, Neumann I. Brain vasopressin regulates maternal behavior and aggression. In: 2007 Neuroscience Meeting Planner;2007 Nov 3-7, CA, USA. San Diego;2007. Program No.84.14.
  47. Young WS, Shepard E, DeVries AC, Zimmer A, LaMarca ME, Ginns EI, et al. Targeted reduction of oxytocin expression provides insights into its physiological roles. Adv Exp Med Biol 1998;449:231-240.
  48. Hovey D, Lindstedt M, Zettergren A, Jonsson L, Johansson A, Melke J, et al. Antisocial behavior and polymorphisms in the oxytocin receptor gene: findings in two independent samples. Mol Psychiatry 2016;21:983-988. https://doi.org/10.1038/mp.2015.144
  49. Ferris CF, Melloni RH Jr, Koppel G, Perry KW, Fuller RW, Delville Y. Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 1997;17:4331-4340. https://doi.org/10.1523/JNEUROSCI.17-11-04331.1997
  50. Bosch OJ. Maternal nurturing is dependent on her innate anxiety: the behavioral roles of brain oxytocin and vasopressin. Horm Behav 2011;59:202-212. https://doi.org/10.1016/j.yhbeh.2010.11.012
  51. Bosch OJ, Neumann ID. Vasopressin released within the central amygdala promotes maternal aggression. Eur J Neurosci 2010;31:883-891. https://doi.org/10.1111/j.1460-9568.2010.07115.x
  52. Ferris CF. Vasopressin/oxytocin and aggression. In: Novartis Foundation, editor. Molecular Mechanisms Influencing Aggressive Behaviours. New York: John Wiley & Sons;2006. p.190-198.
  53. Buffone AE, Poulin MJ. Empathy, target distress, and neurohormone genes interact to predict aggression for others-even without provocation. Pers Soc Psychol Bull 2014;40:1406-1422. https://doi.org/10.1177/0146167214549320
  54. Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 2010;167:509-527. https://doi.org/10.1176/appi.ajp.2010.09101452