DOI QR코드

DOI QR Code

Effects of gintonin on the proliferation, migration, and tube formation of human umbilical-vein endothelial cells: involvement of lysophosphatidic-acid receptors and vascular-endothelial-growth-factor signaling

  • Hwang, Sung-Hee (Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University) ;
  • Lee, Byung-Hwan (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Choi, Sun-Hye (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Hyeon-Joong (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Won, Kyung Jong (Department of Physiology, School of Medicine, Konkuk University) ;
  • Lee, Hwan Myung (Department of Cosmetic Science, College of Natural Science, Hoseo University) ;
  • Rhim, Hyewon (Center for Neuroscience, Korea Institute of Science and Technology) ;
  • Kim, Hyoung-Chun (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University) ;
  • Nah, Seung-Yeol (Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2015.08.26
  • Accepted : 2015.10.19
  • Published : 2016.10.15

Abstract

Background: Ginseng extracts are known to have angiogenic effects. However, to date, only limited information is available on the molecular mechanism underlying the angiogenic effects and the main components of ginseng that exert these effects. Human umbilical-vein endothelial cells (HUVECs) are used as an in vitro model for screening therapeutic agents that promote angiogenesis and wound healing. We recently isolated gintonin, a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand, from ginseng. LPA plays a key role in angiogenesis and wound healing. Methods: In the present study, we investigated the in vitro effects of gintonin on proliferation, migration, and tube formation of HUVECs, which express endogenous LPA1/3 receptors. Results: Gintonin stimulated proliferation and migration of HUVECs. The LPA1/3 receptor antagonist, Ki16425, short interfering RNA against LPA1 or LPA3 receptor, and the Rho kinase inhibitor, Y-27632, significantly decreased the gintonin-induced proliferation, migration, and tube formation of HUVECs, which indicates the involvement of LPA receptors and Rho kinase activation. Further, gintonin increased the release of vascular endothelial growth factors from HUVECs. The cyclooxygenase-2 inhibitor NS-398, nuclear factor kappa B inhibitor BAY11-7085, and c-Jun N-terminal kinase inhibitor SP600125 blocked the gintonin-induced migration, which shows the involvement of cyclooxygenase-2, nuclear factor kappa B, and c-Jun N-terminal kinase signaling. Conclusion: The gintonin-mediated proliferation, migration, and vascular-endothelial-growth-factor release in HUVECs via LPA-receptor activation may be one of in vitro mechanisms underlying ginsenginduced angiogenic and wound-healing effects.

Keywords

References

  1. Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H. The role of vascular endothelial growth factor in wound healing. J Surg Res 2009;153:347-58. https://doi.org/10.1016/j.jss.2008.04.023
  2. Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res 2007;100:782-94. https://doi.org/10.1161/01.RES.0000259593.07661.1e
  3. Post MJ, Laham R, Sellke FW, Simons M. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res 2001;49:522-31. https://doi.org/10.1016/S0008-6363(00)00216-9
  4. Emanueli C, Madeddu P. Changing the logic of therapeutic angiogenesis for ischemic disease. Trends Mol Med 2005;11:207-16. https://doi.org/10.1016/j.molmed.2005.03.007
  5. Khurana R, Simons M, Martin JF, Zachary IC. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 2005;112:1813-24. https://doi.org/10.1161/CIRCULATIONAHA.105.535294
  6. Ziebart T, Yoon CH, Trepels T, Wietelmann A, Braun T, Kiessling F, Stein S, Grez M, Ihling C, Muhly-Reinholz M, et al. Sustained persistence of transplanted proangiogenic cells contributes to neovascularization and cardiac function after ischemia. Circ Res 2008;103:1327-34. https://doi.org/10.1161/CIRCRESAHA.108.180463
  7. Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tono-oka S, Samukawa K, Azuma I. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20(R)- and 20(S)-ginsenoside-Rg3, of red ginseng. Biol Pharm Bull 1995;18:1197-202. https://doi.org/10.1248/bpb.18.1197
  8. Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen CJ. Molecular mechanisms and clinical applications of ginseng root for cardiovascular disease. Med Sci Monit 2004;10:RA187-92.
  9. Kim YM, Namkoong S, Yun YG, Hong HD, Lee YC, Ha KS, Lee H, Kwon HJ, Kwon YG, Kim YM. Water extract of Korean Red Ginseng stimulates angiogenesis by activating the PI3K/Akt-dependent ERK1/2 and eNOS pathways in human umbilical vein endothelial cells. Biol Pharm Bull 2007;30:1674-9. https://doi.org/10.1248/bpb.30.1674
  10. Hong YJ, Kim N, Lee K, Sonn CH, Lee JE, Kim ST, Baeg IH, Lee KM. Korean Red Ginseng (Panax ginseng) ameliorates type 1 diabetes and restores immune cell compartments. J Ethnopharmacol 2012;144:225-33. https://doi.org/10.1016/j.jep.2012.08.009
  11. Morisaki N, Watanabe S, Tezuka M, Zenibayashi M, Shiina R, Koyama N, Kanzaki T, Saito Y. Mechanism of angiogenic effects of saponin from ginseng Radix rubra in human umbilical vein endothelial cells. Br J Pharmacol 1995;115:1188-93. https://doi.org/10.1111/j.1476-5381.1995.tb15023.x
  12. Yue PY, Mak NK, Cheng YK, Leung KW, Ng TB, Fan DT, Yeung HW, Wong RN. Pharmacogenomics and the yin/yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides. Chin Med 2007;2:6. https://doi.org/10.1186/1749-8546-2-6
  13. Yue PY, Wong DY, Ha WY, Fung MC, Mak NK, Yeung HW, Leung HW, Chan K, Liu L, Fan TP, et al. Elucidation of the mechanisms underlying the angiogenic effects of ginsenoside Rg1 in vivo and in vitro. Angiogenesis 2005;8:205-16. https://doi.org/10.1007/s10456-005-9000-2
  14. Yue PY, Wong DY, Wu PK, Leung PY, Mak NK, Yeung HW, Liu L, Cai Z, Jiang ZH, Fan TP, et al. The angiosuppressive effects of 20(R)-ginsenoside Rg3. Biochem Pharmacol 2006;72:437-45. https://doi.org/10.1016/j.bcp.2006.04.034
  15. Shin KO, Seo CH, Cho HH, Oh S, Hong SP, Yoo HS, Hong JT, Oh KW, Lee YM. Ginsenoside compound K inhibits angiogenesis via regulation of sphingosine kinase-1 in human umbilical vein endothelial cells. Arch Pharm Res 2014;37:1183-92. https://doi.org/10.1007/s12272-014-0340-6
  16. Kimura Y, Sumiyoshi M, Kawahira K, Sakanaka M. Effects of ginseng saponins isolated from red ginseng roots on burn wound healing in mice. Br J Pharmacol 2006;148:860-70.
  17. Kim WK, Song SY, Oh WK, Kaewsuwan S, Tran TL, Kim WS, Sung JH. Wound-healing effect of ginsenoside Rd from leaves of Panax ginseng via cyclic AMP-dependent protein kinase pathway. Eur J Pharmacol 2013;702:285-93. https://doi.org/10.1016/j.ejphar.2013.01.048
  18. Leung KW, Cheung LW, Pon YL, Wong RN, Mak NK, Fan TP, Au SC, Tombran-Tink J, Wong AS. Ginsenoside Rb1 inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor. Br J Pharmacol 2007;152:207-15. https://doi.org/10.1038/sj.bjp.0707359
  19. Pyo MK, Choi SH, Hwang SH, Shin TJ, Lee BH, Lee SM, Lim Y, Kim D, Nah SY. Novel glycoproteins from ginseng. J Ginseng Res 2011;35:92-103. https://doi.org/10.5142/jgr.2011.35.1.092
  20. Hwang SH, Shin TJ, Choi SH, Cho HJ, Lee BH, Pyo MK, Lee JH, Kang JK, Kim HJ, Park CW, et al. Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates G protein-coupled lysophosphatidic acid receptors with high affinity. Mol Cells 2012;33:151-62. https://doi.org/10.1007/s10059-012-2216-z
  21. Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH. International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol Rev 2010;62:579-87. https://doi.org/10.1124/pr.110.003111
  22. Lee H, Goetzl EJ, An S. Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. Am J Physiol Cell Physiol 2000;278:C612-8. https://doi.org/10.1152/ajpcell.2000.278.3.C612
  23. Lin CI, Chen CN, Lin PW, Chang KJ, Hsieh FJ, Lee H. Lysophosphatidic acid regulates inflammation-related genes in human endothelial cells through LPA1 and LPA3. Biochem Biophys Res Commun 2007;363:1001-8. https://doi.org/10.1016/j.bbrc.2007.09.081
  24. Sako A, Kitayama J, Shida D, Suzuki R, Sakai T, Ohta H, Nagawa H. Lysophosphatidic acid (LPA)-induced vascular endothelial growth factor (VEGF) by mesothelial cells and quantification of host-derived VEGF in malignant ascites. J Surg Res 2006;130:94-101. https://doi.org/10.1016/j.jss.2005.08.007
  25. Lin CI, Chen CN, Huang MT, Lee SJ, Lin CH, Chang CC, Lee H. Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation- and EGFR transactivation-dependent mechanisms. Cell Signal 2008;20:1804-14. https://doi.org/10.1016/j.cellsig.2008.06.008
  26. Zhao L, Wu Y, Xu Z, Wang H, Zhao Z, Li Y, Yang P, Wei X. Involvement of COX-2/PGE2 signalling in hypoxia-induced angiogenic response in endothelial cells. J Cell Mol Med 2012;16:1840-55. https://doi.org/10.1111/j.1582-4934.2011.01479.x
  27. Gimbrone Jr MA, Cotran RS, Folkman J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol 1974;60:673-84. https://doi.org/10.1083/jcb.60.3.673
  28. Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 1988;48:4827-33.
  29. Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A 2009;106:3794-9. https://doi.org/10.1073/pnas.0804543106
  30. Symowicz J, Adley BP, Woo MM, Auersperg N, Hudson LG, Stack MS. Cyclooxygenase-2 functions as a downstream mediator of lysophosphatidic acid to promote aggressive behavior in ovarian carcinoma cells. Cancer Res 2005;65:2234-42. https://doi.org/10.1158/0008.5472.CAN-04-2781
  31. Wu G, Mannam AP, Wu J, Kirbis S, Shie JL, Chen C, Laham RJ, Sellke FW, Li J. Hypoxia induces myocyte-dependent COX-2 regulation in endothelial cells: role of VEGF. Am J Physiol Heart Circ Physiol 2003;285:H2420-9. https://doi.org/10.1152/ajpheart.00187.2003
  32. Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 2001;21:1104-17. https://doi.org/10.1161/hq0701.093685
  33. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992;267:10931-4.
  34. English D, Kovala AT, Welch Z, Harvey KA, Siddiqui RA, Brindley DN, Garcia JG. Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. J Hematother Stem Cell Res 1999;8:627-34. https://doi.org/10.1089/152581699319795
  35. Panetti TS, Nowlen J, Mosher DF. Sphingosine-1-phosphate and lysophosphatidic acid stimulate endothelial cell migration. Arterioscler Thromb Vasc Biol 2000;20:1013-9. https://doi.org/10.1161/01.ATV.20.4.1013
  36. van Meeteren LA, Ruurs P, Stortelers C, Bouwman P, van Rooijen MA, Pradere JP, Pettit TR, Wakelam MJ, Saulnier-Blache JS, Mummery CL, et al. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 2006;26:5015-22. https://doi.org/10.1128/MCB.02419-05
  37. Piazza GA, Ritter JL, Baracka CA. Lysophosphatidic acid induction of transforming growth factors alpha and beta: modulation of proliferation and differentiation in cultured human keratinocytes and mouse skin. Exp Cell Res 1995;216:51-64. https://doi.org/10.1006/excr.1995.1007
  38. Lin CI, Chen CN, Huang MT, Lee SJ, Lin CH, Chang CC, Lee H. Lysophosphatidic acid up-regulates vascular endothelial growth factor-C and lymphatic marker expressions in human endothelial cells. Cell Mol Life Sci 2008;65:2740-51. https://doi.org/10.1007/s00018-008-8314-9
  39. Meyer zu Heringdorf D, Jakobs KH. Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta 2007;1768:923-40. https://doi.org/10.1016/j.bbamem.2006.09.026
  40. Kranenburg O, Poland M, van Horck FP, Drechsel D, Hall A, Moolenaar WH. Activation of RhoA by lysophosphatidic acid and Galpha12/13 subunits in neuronal cells: induction of neurite retraction. Mol Biol Cell 1999;10:1851-7. https://doi.org/10.1091/mbc.10.6.1851
  41. Ptaszynska MM, Pendrak ML, Stracke ML, Roberts DD. Autotaxin signaling via lysophosphatidic acid receptors contributes to vascular endothelial growth factor-induced endothelial cell migration. Mol Cancer Res 2010;8:309-21. https://doi.org/10.1158/1541-7786.MCR-09-0288
  42. Hwang SH, Lee BH, Kim HJ, Cho HJ, Shin HC, Im KS, Choi SH, Shin TJ, Lee SM, Nam SW, et al. Suppression of metastasis of intravenously-inoculated B16/F10 melanoma cells by the novel ginseng-derived ingredient, gintonin: involvement of autotaxin inhibition. Int J Oncol 2013;42:317-26. https://doi.org/10.3892/ijo.2012.1709
  43. van Meeteren LA, Ruurs P, Christodoulou E, Goding JW, Takakusa H, Kikuchi K, Perrakis A, Nagano T, Moolenaar WH. Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J Biol Chem 2005;280:21155-61. https://doi.org/10.1074/jbc.M413183200
  44. Ptaszynska MM, Pendrak ML, Bandle RW, Stracke ML, Roberts DD. Positive feedback between vascular endothelial growth factor-A and autotaxin in ovarian cancer cells. Mol Cancer Res 2008;6:352-63. https://doi.org/10.1158/1541-7786.MCR-07-0143

Cited by

  1. Anticancer Efficacy of Cordyceps militaris Ethanol Extract in a Xenografted Leukemia Model vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/8474703
  2. Upregulating mTOR/ERK signaling with leonurine for promoting angiogenesis and tissue regeneration in a full-thickness cutaneous wound model vol.9, pp.4, 2016, https://doi.org/10.1039/c7fo01289f
  3. Asperosaponin VI promotes angiogenesis and accelerates wound healing in rats via up-regulating HIF-1α/VEGF signaling vol.39, pp.3, 2016, https://doi.org/10.1038/aps.2017.161
  4. Crosstalk between cancer cells and endothelial cells: implications for tumor progression and intervention vol.41, pp.7, 2016, https://doi.org/10.1007/s12272-018-1051-1
  5. Gintonin Enhances Proliferation, Late Stage Differentiation, and Cell Survival From Endoplasmic Reticulum Stress of Oligodendrocyte Lineage Cells vol.10, pp.None, 2016, https://doi.org/10.3389/fphar.2019.01211
  6. Ginseng Gintonin Contains Ligands for GPR40 and GPR55 vol.25, pp.5, 2016, https://doi.org/10.3390/molecules25051102
  7. Hormesis and Ginseng: Ginseng Mixtures and Individual Constituents Commonly Display Hormesis Dose Responses, Especially for Neuroprotective Effects vol.25, pp.11, 2020, https://doi.org/10.3390/molecules25112719
  8. Cognitive improvement effect of gintonin might be associated with blood-brain barrier permeability enhancement: dynamic contrast-enhanced MRI pilot study vol.29, pp.1, 2016, https://doi.org/10.12793/tcp.2021.29.e2
  9. Wound Healing Effect of Gintonin Involves Lysophosphatidic Acid Receptor/Vascular Endothelial Growth Factor Signaling Pathway in Keratinocytes vol.22, pp.18, 2021, https://doi.org/10.3390/ijms221810155
  10. Circulating Exosomal miR-221 from Maternal Obesity Inhibits Angiogenesis via Targeting Angptl2 vol.22, pp.19, 2016, https://doi.org/10.3390/ijms221910343