A Study on the Pedagogical Application of Omar Khayyam's Geometric Approaches to Cubic Equations

오마르 카얌(Omar Khayyam)이 제시한 삼차방정식의 기하학적 해법의 교육적 활용

  • Received : 2016.08.10
  • Accepted : 2016.09.13
  • Published : 2016.09.30

Abstract

In this study, researchers have modernly reinterpreted geometric solving of cubic equations presented by an arabic mathematician, Omar Khayyam in medieval age, and have considered the pedagogical significance of geometric solving of the cubic equations using two conic sections in terms of analytic geometry. These efforts allow to analyze educational application of mathematics instruction and provide useful pedagogical implications in school mathematics such as 'connecting algebra-geometry', 'induction-generalization' and 'connecting analogous problems via analogy' for the geometric approaches of cubic equations: $x^3+4x=32$, $x^3+ax=b$, $x^3=4x+32$ and $x^3=ax+b$. It could be possible to reciprocally convert between algebraic representations of cubic equations and geometric representations of conic sections, while geometrically approaching the cubic equations from a perspective of connecting algebra and geometry. Also, it could be treated how to generalize solution of cubic equation containing variables from geometric solution in which coefficients and constant terms are given under a perspective of induction-generalization. Finally, it could enable to provide students with some opportunities to adapt similar solving procedures or methods into the newly-given cubic equation with a perspective of connecting analogous problems via analogy.

본 논문에서는 중세 시대 아랍의 수학자 오마르 카얌(Omar Khayyam)이 제시한 삼차방정식의 기하학적 해법을 현대적으로 재해석하고 두 개의 원뿔곡선을 활용한 삼차방정식의 기하학적 해법이 갖는 교수학적 의미를 고찰하였다. 이를 바탕으로 삼차방정식 $x^3+4x=32$, $x^3+ax=b$, $x^3=4x+32$, $x^3=ax+b$의 기하학적 해법을 '대수와 기하의 연결', '귀납 및 일반화', '유추를 통한 유사한 해법의 연결' 관점에서 교육적으로 활용할 수 있는 방법과 적용 가능한 교수학적 시사점을 제시하고자 하였다. 삼차방정식을 기하학적으로 해결하면서 '대수와 기하의 연결'의 관점에서 삼차방정식의 대수적 표상과 원뿔곡선이라는 기하학적 표상의 상호 전환을 다룰 수 있다. 또한 '귀납 및 일반화'의 관점에서는 계수 및 상수항이 구체적인 수로 제시된 방정식의 기하학적 해법을 변수가 포함된 삼차방정식의 해법으로 일반화하는 과정을 다룰 수 있으며, '유추를 통한 유사한 해법의 연결'의 관점에서 문제의 해법과 관련된 유사한 절차와 방법을 새로운 문제의 해결에 적용할 수 있는 기회를 제공할 수 있을 것이다.

Keywords

References

  1. 교육과학기술부(2011). 수학과 교육과정. 교육과학기술부 고시 제 2011-261호 [별책 8].
  2. 교육부(2015). 수학과 교육과정. 교육부 고시 제 2015-74호 [별책 8].
  3. 류희찬․조완영․이정례․선우하식․이진호․손홍찬․신보미․조정묵․이병만․김용식․임미선․선미향․유익승․한명주․박원균․남선주․김명수․정성윤(2014). 고등학교 수학 I. 서울: 천재교과서.
  4. 우정호(2007). 학교수학의 교육적 기초(증보판 2판). 서울대학교 출판부.
  5. 우정호․민세영․정연준(2003). 역사발생적 수학교육 원리에 대한 연구(2): 수학사의 교육적 이용과 수학교사 교육. 학교수학, 5(4), 555-572.
  6. 이경화(2010). 교수학적 변환 과정에서 은유와 유추의 활용. 수학교육학연구, 20(1), 57-71.
  7. Allaire, P. R., & Bradley, R. E. (2001). Geometric approaches to quadratic equations from other times and places. Mathematics Teacher, 94(4), 308-319.
  8. Amir-Moez, A. R. (1962). Khayyam's solution of cubic equations. Mathematics magazine, 35(5), 269-271. https://doi.org/10.2307/2688197
  9. Atiyah, M. (2001). Mathematics in the 20th Century: geometry versus algebra. Mathematics Today, 37(2), 46-53.
  10. Berggren, J. L. (1986). Episodes in the mathematics of medieval Islam. New York: Springer-Verlag.
  11. Boyer, C. B., & Merzbach, U. C. (1991). A history of mathematics (2nd ed). New York: McGraw-Hill.
  12. Common Core State Standards Initiative(CCSSI). (2010). Common Core State Standards For Mathematics. U.S.A.
  13. Connor, M. B. (1956). A historical survey of methods of solving cubic equations. Unpublished master's dissertation, University of Richmond, Virginia.
  14. Coxford, A. F. (1995). The case for connections. In P. A. House & A. F. Coxford (Eds.), Connecting mathematics across the curriculum (pp. 3-12). Reston, VA: National Council of Teachers of Mathematics.
  15. Dikovic, L. (2009). Applications geogebra into teaching some topics of mathematics at the college level. Computer Science and Information Systems, 6(2), 191-203. https://doi.org/10.2298/CSIS0902191D
  16. English, L. D. (Ed.). (2004). Mathematical and analogical reasoning of young leaders. Mahwah, NJ: Lawrence Erlbaum Associates.
  17. Erez, M. M., & Yerushalmy, M. (2006). "If you can turn a rectangle into a square you can turn a square into a rectangle..." young students experience the dragging tool. International Journal of Computers for Mathematics Learning, 11(3), 271-299.
  18. Eves, H. (1958). Omar Khayyam's Solution of Cubic Equation. Mathematics Teacher 51, 285-286.
  19. Eves, H. (1995). 수학의 역사(이우영, 신항균 역). 서울: 경문사. (원저는 1953년에 출판).
  20. Georgia Department of Education(GDE). (2014). Common Core Georgia Performance Standards Frameworks of Mathematics, CCGPS Coordinate Algebra Unit 6: Connecting Algebra and Geometry through Coordinates. U.S.A.
  21. Grabiner, J. (1995). Descartes and problem-solving. Mathematics Magazine, 68(2), 83-97. https://doi.org/10.2307/2691183
  22. Guilbeau, L. (1930). The History of the Solution of the Cubic Equation. Mathematics News Letter, 5(4), 8-12.
  23. Healy, L., & Hoyles, C. (2001). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 6(3), 235-256. https://doi.org/10.1023/A:1013305627916
  24. Henning, H. B. (1972). Geometric solutions to quadratic and cubic equations. Mathematics Teacher, 65, 113-119.
  25. Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: Epistemic actions. Journal of Research in Mathematics Education, 32(2), 195-222. https://doi.org/10.2307/749673
  26. Hoyles, C., Noss, R., & Pozzi, S. (1999). Mathematizing in practice. In C. Hoyles, C. Morgan, & G. Woodhouse (Eds.), Rethinking the mathematics curriculum (pp. 48-62). London: Falmer Press.
  27. Jones, K. (2002). Research on the use of dynamic geometry software. MicroMath, 18(3), 18-20.
  28. Kasir, D. S. (1931). The Algebra of Omar Khayyam. Columbia University, NY.
  29. Katz, V. J. (1997). Algebra and its teaching: An historical survey. Journal of Mathematical Behavior, 16(1), 25-38. https://doi.org/10.1016/S0732-3123(97)90005-5
  30. Khayyam, O. (2008). An essay by the uniquely wise 'ABEL FATH BIN AL-KHAYYAM on algebra and equations. Translated by R. Khalil & Reviewed by W. Deeb. UK: RG1 4QS.
  31. Knuth, E. J. (2000). Understanding connections between equations and graphs. Mathematics Teacher, 93(1), 48-53.
  32. Krantz, S. G. (2010). An episodic history of mathematics: Mathematical culture through problem solving. The Mathematical Association of America.
  33. Laborde, C. (1998). Relationship between the spatial and theoretical in geometry: The role of computer dynamic representations in problem solving. In J. D. Tinsley & D. C. Johnson (Eds.), Information and communications technologies in school mathematics (pp. 183-195). London, UK: Chapman & Hall.
  34. Laborde, C. (2010). Linking geometry and algebra through dynamic and interactive geometry. In Z. Usiskin, K. Andersen, & N. Zotto (Eds.), Future curricular trends in school algebra and geometry (pp. 217-230). Charlotte, NC: Information Age Publishing.
  35. Lakoff, G., & Nunez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic Books.
  36. Law, H. L. (2003). The comparison between the methods of solution for cubic equations in Shushu Jiuzhang and Risalah fil-barahin a'la masail ala-Jabr wa'l-Muqabalah. Mathematical Modley, 30(2), 91-101.
  37. Lee, K. H., & Sriraman, B. (2011). Conjecturing via reconceived classical analogy. Educational Studies in Mathematics, 76, 123-140. https://doi.org/10.1007/s10649-010-9274-1
  38. Lumpkin, B. (1978). A mathematics club project from Omar Khayyam. Mathematics Teacher, 71(9), 740-744.
  39. Mardia, K. V. (1999). Omar Khayyam, Rene Descartes and solutions to algebraic equations. Presented to Omar Khayyam Club, London. Retrieved from http://www1.maths.leeds.ac.uk/-sta6kvm/omar.pdf.
  40. Maryland Department of Education(MDE). (2013). Maryland Common Core State Curriculum Unit Plan for Geometry. Geometry Unit 4: Connecting Algebra and Geometry through Coordinates. U.S.A.
  41. Mena, R. (2009). First course in the history of mathematics (pp.123-125). Unpublished paper, California State University. Retrieved from http://web.csulb.edu/-rmena/History/Complete%20Notes%20303%20 with%20exercises.pdf.
  42. Mitchelmore, M. C. (2002). The role of abstraction and generalisation in the development of mathematical knowledge. In D. Edge, & B. H. Yeap (Eds.), Mathematics education for knowledge-based era (Proceedings of the 2nd East Asia Regional Conference on Mathematics Education and the 9th Southeast Asian Conference on Mathematics Education) (pp. 157-167). Singapore: Association of Mathematics Educators.
  43. National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author. 구광조, 오병승, 류희찬 공역(1992). 수학교육과정과 평가의 새로운 방향. 서울: 경문사.
  44. National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: Author. 류희찬, 조완영, 이경화, 나귀수, 김남균, 방정숙 공역(2007). 학교수학을 위한 원리와 규준. 서울: 경문사.
  45. Polya, G. (2005). 어떻게 문제를 풀 것인가? -수학적 사고와 방법-(우정호 역). 서울: 경문사. (원저는 1956년에 출판).
  46. Sangwin, C. (2007). A brief review of GeoGebra: dynamic mathematics. MSOR Connections, 7(2), 36-38. https://doi.org/10.11120/msor.2007.07020036
  47. Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press.
  48. Sriraman, B. (2004). Reflective abstraction, uniframes and formulation of generalizations. Journal of Mathematical Behavior, 23(2), 205-222. https://doi.org/10.1016/j.jmathb.2004.03.005
  49. Tall, D. (2011). Looking for the bigger picture. For the Learning of Mathematics., 31(2), 17-18.
  50. Wagner, R. (2013). A historically and philosophically informed approach to mathematical metaphors. International Studies in the Philosophy of Science, 27(2), 109-135. https://doi.org/10.1080/02698595.2013.813257
  51. Yerushalmy, M., & Gilead, S. (1997). Solving equations in a technological environment. Mathematics Teacher, 90(2), 156-162.
  52. Zazkis, R., Liljedahl, P., & Chernoff, E. J. (2007). The role of examples in forming and refuting generalizations. ZDM Mathematics Education, 40(1), 131-141.