
J. Inf. Technol. Appl. Manag. 23(3): 71~86, September 2016 ISSN 1598-6284 (Print)

http://dx.doi.org/10.21219/jitam.2016.23.3.071 ISSN 2508-1209 (Online)

Cause-and-Effect Perspective on Software Quality :

Application to ISO/IEC 25000 Series SQuaRE’s Product Quality Model

Seokha Koh*

Abstract

This paper proposes a new software quality model composed of a hierarchy of software quality

views and three software quality characteristics models. The software view hierarchy is composed of

two levels : end view and means view at the first level, contingency view and intrinsic view as sub-views

of means view. Three software quality characteristics models are activity quality characteristics model,

contingency quality characteristics model, and intrinsic quality characteristics model, which correspond

to end view, contingency view, and intrinsic view respectively.

This paper also reclassifies characteristics of ISO/IEC 25000 series SQuaRE’s software product quality

model according to the proposed software quality model. The results illustrate clearly the shortcomings

of SQuaRE’s product quality model and how to overcome them. First of all, most of SQuaRE’s product

characteristics should be redefined and conceptually clarified according to the views on which they are

really rested. Much more characteristics should be supplemented too. After that, rigorous empirical researches

will become relevant. Causal relationships between activity quality characteristics and characteristics of

means view should be empirically researched.

Keywords：Software Quality, ISO/IEC 25000 Series, SQuaRE(Systems and software Quality Requirement

and Evaluation), Software Quality View, Software Quality Model, Cause and Effect Relationship

1)

Received：2016. 05. 25. Revised : 2016. 06. 29. Final Acceptance：2016. 09. 19.

※ This work was supported by the research grant of Chungbuk National University in 2014.
 * Department of Management Information Systems, Chungbuk National University, 1 Chungdae-ro Seowon-gu Cheongju, Chungbuk

362-763, Korea, Tel：+82-43-261-7062, Fax：+82-43-273-2355, e-mail：shkoh@cbnu.ac.kr

72 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

1. Introduction

This paper proposes a new software quality

model and reclassifies characteristics of ISO/

IEC (The International Standard Organization/

The International Electrotechnical Commission)

25000 Series SQuaRE’s (System and software

product Quality Requirements and Evaluation)

software product quality model according to the

proposed model. The results illustrate clearly

the shortcomings of SQuaRE’s product quality

model and how to overcome them.

ISO/IEC issued ISO/IEC 25000 in 2005, ISO/

IEC 25020 and 25030 in 2007, ISO/IEC 25010 and

25040 in 2011. ISO/IEC also published many other

documents regarding SQuaRE. SQuaRE replaces

ISO/IEC 9126 issued in 1991 and revised during

2001～2004. As well as ISO/IEC 9126, however,

SQuaRE still suffers from ambiguity, inconsis-

tency, and contradictions, and is un-suitable to

measure the design quality of software product

[Al-Kilidar, 2005; Haboush et al., 2014; Kitchenham

and Pfleeger, 1996; Koh and Whang, 2016].

SQuaRE defines the quality of a software

product or a system as ‘the degree to which it

satisfies the stated and implied needs of its var-

ious stakeholders, and thus provides value’1)

[ISO/IEC 25022.2 : 2015]. This definition implies

that the quality of the product may vary as

stakeholders or their needs regarding a software

product vary. That is, SQuaRE defines software

quality as something that is neither invariant nor

1) In this paper, italic font denotes that corresponding
part is quoted with no or only slight changes from
the cited literature.

intrinsic.

SQuaRE defines three views : internal, ex-

ternal, and in-use. According to SQuaRE, in-

ternal software quality is mainly related to static

properties of the software and has an impact on

external software quality, which again has an

impact on quality in use [IOC/IEC 25030:2007].

SQuaRE, however, defines only two software

quality models : quality in use model which is

rest on in-use view and product quality model

which is rest on both internal view and external

views simultaneously. This implies that SQuaRE

may not treat cause and effect relationships

properly, in fact. In this paper, this issue and as-

sociated issues will be addressed in depth. The

results will provide indispensable clues to re-

solve SQuaRE’s shortcomings and to construct

a more integrative and consistent software quality

model.

From now on in this paper, the issues regar-

ding only software quality will be addressed.

The issues regarding the quality of system will

be excluded from discussions unless they are

related with the quality of software. For exam-

ple, security is regarded as a system-level char-

acteristic in this paper. Security of a system de-

pends on chiefly security software and proce-

dures rather than individual application software

products : As well as data stored in or by a

product or system, security also applies to data

in transmission [ISO/IEC 25010 : 2011, p. 14].

So, security and its sub-characteristics will be

excluded from further discussion. Without any

further notice, the term quality will be used to

denote the quality of software products.

Vol.23 No.3 Cause-and-Effect Perspective on Software Quality 73

Characteristic

Sub-characteristic
Type of Activity

Role of Entity

Performing the Activity

Usability Using

End user

Accessibility Accessing

Appropriateness recognizability Recognizing appropriateness

Learnability Learning how to use

Operability Operating/controlling

Portability Transferring
System operator

Installability Installing/uninstalling

Adaptability Adapting

Maintainer

Maintainability Modifying

Analyzability Analyzing

Modifiability Modifying

Testability Testing

Reusability Reusing an asset Developer of other software products

<Table 1> Types of Software Activity Cited in the Product Quality Characteristic Definitions

Source : Koh and Whang [2016].3)

2. Dependency in Definitions of

Product Quality Characteristics

SQuaRE’s product quality model has 8 pro-

duct quality characteristics (in contrast to ISO

9126’s 6), and 31 sub-characteristics (in contrast

to ISO 9126’s 212)). Among 8 product quality

characteristics, usability, portability, and main-

tainability are directly related with software ac-

tivities such as using, transferring, and modify-

ing, respectively (refer <Table 1> and under-

lined parts of <Appendix>). Koh and Whang [2016]

2) Compliance with laws and regulations is regarded as
a sub-characteristic, as usual. Compliance is included
as a sub-characteristic of each and every characte-
ristic. So, compliance to each characteristic may be
regarded as a sub-characteristic, increasing the num-
ber of sub-characteristics to 26. Or compliance may
be regard as a characteristic which has 6 sub-charac-
teristics, increasing the numbers of characteristic and
sub-characteristic to 7 and 26, respectively. ISO/IEC
25010 regards compliance as a part of the overall
requirements, rather than as a specific part of soft-
ware quality.

call such characteristics activity quality charac-

teristics. In this paper, the software activity is

defined as the activity which is performed on

a software product by external entities other

than the product itself. The operation which is

performed by the target software itself is not

classified as software activity. 3)

According to this definition, ‘providing func-

tions’ in functional suitability is not software ac-

tivity since the entity that ‘provides functions’

is the target product itself. By the same token,

exchanging in compatibility, using in perform-

ance efficiency, recovering and re-establishing

in recoverability, and performing in reliability,

are not regarded as software activities. So, cor-

responding characteristics are not classified as

activity quality characteristics.

SQuaRE explains replaceability as a compo-

site concept of installability and adaptability [ISO/

3) Availability, recoverability, and replaceability are deleted
from the original table.

74 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

IEC 25010 : 2011, p. 16]. Then, it will be redun-

dant with the characteristics. Moreover, SQuaRE

explains that it is not a characteristic of the

original product but that of an already adapted

or modified version of the current target prod-

uct: it refers whether or not an already adapted

or modified version of the current target prod-

uct can be used in place of the present one

[ISO/IEC 25010 : 2011, p. 16]. That is, SQuaRE

does not regard it as a generic quality charac-

teristic. Moreover, it is a composite concept of

installability, compatibility, functional suitability,

performance efficiency, or etc. according to the

explanation. It will be excluded from further dis-

cussions in this paper too.

Although most sub-characteristics of usability,

portability and maintainability are explicitly de-

fined to involve software activity, however, some

sub-characteristics of them are not related with

software activity. For example, among sub-cha-

racteristics of usability, user error protection and

user interface aesthetics are not related with any

software activity. Although user error protec-

ting involves ‘protecting users’, the entity that

protect users is defined to be the target product.

So, user error protection is not classified as an

activity quality characteristic. Among sub-charac-

teristics of maintainability, it is obvious that

modularity is not related with software activity.

It is noticeable that accessing is involved in

the definitions of both accessibility and avail-

ability. In this paper, availability is presumed not

to be related with individual accessing activities

by end users, but to be related with the state in

which the product can be accessed.4) Otherwise,

it will be redundant with accessibility. In this

regard, availability is affected by the target

product and the target system, but affected by

neither environments nor contexts.

Modifying also appears in the definitions of

both maintainability and its sub-characteristic

modifiability. The definitions of these character-

istics are virtually the same, although their ex-

pressions are slightly different. The only virtual

difference is that ‘modifying without introducing

defects or degrading existing product quality’

is added in modifiability. Then, is it alright for

‘defects or degrading existing product quality’

to be introduced in maintaining? The definition

of these two characteristics should be differ-

entiated for these characteristics not to be re-

dundant.

SQuaRE classifies adaptability as a sub-charac-

teristic of portability. At the same time, SQuaRE

also regards adapting as a sub-type of mod-

ification or an activity alternative to modifica-

tion : Modifications can include corrections, im-

provements or adaptation of the software to

changes in environment, and in requirements

and functional specifications: and both adapta-

tions and modifications include those carried

out by specialized support staff, and those car-

ried out by business or operational staff, or end

users [ISO/IEC 25010 : 2011, pp. 14-15]. SQuaRE

even regards installing as a sub-activity of main-

taining : Maintainability includes installation of

updates and upgrades [ISO/IEC 25010 : 2011, pp.

14-15]. According to SQuaRE’s explanations,

adaptability may not be classified as a sub-cha-

4) <Table 1> is identical with the corresponding table
in Koh and Whang [2016] except that ‘availability’
is deleted.

Vol.23 No.3 Cause-and-Effect Perspective on Software Quality 75

racteristic of portability.

Adapting is typically regarded as a sub-type

of maintaining or post life cycle changing [Abran

and Nguyenkim, 1993; ANSI/IEEE Std. 729-1983;

Dekleva, 1992; Glass, 1996; Hatton, 2007; Helms

and Weiss, 1984; Herraiz et al., 2013; IEEE Std.

1219-1998; ISO/IEC 14764-2006; Kemerer and

Slaughter, 1997; Koh and Han, 2015; Lients and

Swanson, 1980; Sneed, 1996]. That is, an activity

which is adapting is also maintaining.

Analyzing and testing are not sub-types, but

are sub-activities of maintaining. Neither analy-

zing nor testing is maintaining by themselves.

They are ones of various activities which con-

stitute maintaining together. That is, to maintain

a product, one should analyze, test the product,

and even do something other.

On the other hand, modularity is neither a sub-

type nor a sub-activity of maintaining. SQuaRE

recognizes that both modularity and analyz-

ability influence maintainability : Modifiability

is a combination of changeability and stability

and can be influenced by modularity and analyz-

ability [ISO/IEC 25010 : 2011, p. 15]. It is right

that both modularity and analyzability influence

maintainability. This seems the reason that SQuaRE

classifies both the characteristics as sub-charac-

teristics of maintainability. The relationship bet-

ween modularity and maintainability is cause-

and-effect relationship, however, while that bet-

ween analyzability and maintainability is corre-

lational. Moreover, modularity influences analyz-

ability too.

SQuaRE defines some product quality charac-

teristics to be dependent on contexts, environ-

ments, or conditions, (refer <Table 2> and un-

derlined parts of <Appendix>). It defines context

of use and quality in use as ‘users, tasks, equip-

ment (hardware, software and materials), and

the physical and social environments in which

a product is used’ and ‘the degree to which a

product can be used by specific users to meet

their needs to achieve specific goals with effec-

tiveness, efficiency, freedom from risk and sat-

isfaction in specific contexts of use,’ respectively

[ISO/IEC 25010 : 2011, p. 18; ISO/IEC 25030 : 2007,

p. 20]. It defines users to encompass various

‘stakeholders who provide support such as main-

tainers, analyzers, porters, installers, content

providers, system managers/administrators, and

security managers as well as primary users who

interact with the system to achieve the primary

goals and indirect users who receive output, but

does not interact with system’ [ISO/IEC 25010 :

2011, pp. 5-6]. It also defines the activity ‘using’

to encompass the various software activities

that these stakeholders perform, for example,

such as maintaining and porting.

SQuaRE emphasizes that ‘each of these types

of user has needs for quality in use and product

quality in particular contexts of use’ [ISO/IEC

25010 : 2011, pp. 5-7]. In maintaining or porting,

for example, maintainers have needs for effec-

tiveness, efficiency, satisfaction, freedom from

risk, reliability, security context coverage, learn-

ability, and accessibility’ [ISO/IEC 25010 : 2011,

pp. 5-7]. SQuaRE also explains that the term

usability has a similar meaning to quality in use,

but excludes freedom from risk and context

coverage [ISO/IEC 25022.2 : 2015]. These exam-

ples illustrate that SQuaRE regards every types

of software activities is dependent on contexts.

76 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Dependent on Activity-Related Not AR

Contexts

accessibility

learnability

USABILITY
*

Environments

adaptability (pairs of environments)

installability

PORTABILITY (pairs of environments)

COMPATIBILITY

Conditions

FUNCTIONAL SUITABILITY

PERFORMANCE EFFICIENCY

RELIABILITY

None

analyzability

appropriateness recognizability-Usability
**

MAINTAINABILITY

modifiability

operability-Usability

reusability

testability

availability-Reliability

fault tolerance-Reliability

capacity-Performance efficiency

coexistence-Compatibility

functional appropriateness-Functional suit.

functional completeness-Functional suitability

functional correctness-Functional suitability

interoperability-Compatibility

maturity-Reliability

modularity

recoverability-Reliability

resource utilization-Performance efficiency

time behavior-Performance efficiency

user error protection

user interface aesthetics

<Table 2> Dependency of SQuaRE’s Product Quality Characteristics

*
Upper case denotes that the characteristic is a super-characteristic.

**
Pair of a sub-characteristic and its super-characteristic. For the pair, no dependency in the sub-characteristic is
specified, but the author supposes, subjectively, that the dependency in the super-characteristic is inherited to the
sub-characteristic.

SQuaRE, however, explicitly declares context

dependency in definitions of only 3 characteri-

stics usability and its two sub-characteristics

accessibility and learnability. For adaptability,

installability, and portability, SQuaRE explicitly

declares dependency on only environments. For

the other activity quality characteristics, SQuaRE

does not explicitly declare any dependency in

their definitions. But it is reasonable to interpret

that the characteristics inherit the dependency

of their super-characteristics. User error pro-

tection and user interface aesthetics, however,

do not inherit context dependency form their su-

per-characteristic usability since they do not in-

volve any sub-activity of using.

SQuaRE declares functional suitability, per-

formance efficiency, and reliability depend on

conditions. It, however, does not specify what

the term condition means : context, or environ-

ment, or something other than environments or

contexts, or everything including environment

and context.

In this paper, a characteristic of a software

product that is not dependent on anything other

than the product itself will be called an intrinsic

characteristic. An intrinsic characteristic remains

Vol.23 No.3 Cause-and-Effect Perspective on Software Quality 77

unique unless the product itself changes. A cha-

racteristic which depends on something other

than the product, for example, such as system,

contexts, environments, or conditions is not an

intrinsic characteristic. That is, a characteristic

which cannot be measured without referring

something other than the target product itself

is not intrinsic. Modularity is a typical example

of intrinsic quality characteristic. It can be eva-

luated without referring something other than

the software product itself.

All super-characteristics of product quality

model are not intrinsic. Six super-characteri-

stics are defined to be dependent on contexts,

environments, or conditions. Although any depen-

dency is not defined for maintainability, main-

tainability is an activity characteristic and de-

pends on contexts.

3. Discussions

Regarding activity quality characteristics, SQuaRE

proposes only the ends that the developer should

pursuit without suggesting anything about how

to realize the ends. Activity quality characteri-

stics declare that software products should be

good for software activities such as using, main-

taining, and porting. But they, by themselves,

do not provide any information about how to

make software products good for such activities.

They are even misleading.

Most of all, SQuaRE’s product quality model

does not properly classify types of software ac-

tivity. For example, adapting is not a sub-type

of porting although it is classified as sub-cha-

racteristic of portability.

Reusing is also not a sub-activity of main-

taining according to its very definition : ‘Reusing

an asset in more than one system or in building

other assets’ [ISO/IEC 25010 : 2011, p. 15] is not

involved in maintaining the asset or the product

containing the asset. Moreover, a software pro-

duct as a whole is never used unchanged to de-

velop another software product. It is an asset

contained in the software product, which is reused

in ‘more than one system or in building other

assets.’ If reusability refers ‘the degree to which

a product can be changed to be used in more

than one system or in building other assets,’ it

is redundant with adaptability or modifiability.

Reusability should be defined to be a character-

istic of modules in a software product.

Another problem of the product quality model

is that some super-characteristics include both

activity characteristics and non-activity char-

acteristics as their sub-characteristics simulta-

neously. For example, maintainability includes

both modularity and analyzability. Modularity,

however, may influence both maintainability and

analyzability. This suggests that it may not be

desirable to combine activity characteristics and

non-activity characteristics into a model.

We define means view as an effort to find out

the causes of something. Means view and end

view are associated with cause and effect, res-

pectively. Regarding software quality, means view

represents the effort to find out the characteri-

stics of software products that make the pro-

ducts good for various kinds of software acti-

vity. In this regard, all activity quality charac-

teristics are of end view. Intrinsic view repre-

sents an effort to find out intrinsic characteri-

78 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

stics which facilitate software activities. Con-

tingency view represents an effort to find out

non-intrinsic characteristics such that the de-

gree to which they facilitate software activities

varies according to contingencies. In this paper,

the quality models rested on end view, contin-

gency view, and intrinsic view will be called ac-

tivity quality characteristics model, contingency

quality characteristics model, and intrinsic quality

characteristics model, respectively.

We presume following premise, proposition

and hypotheses valid without rigorous valida-

tion or verification.

Premise : Views regarding software quality may

be classified into end view and means view.

Means view may be classified further into

contingency view and intrinsic view.

Proposition : Quality characteristics of means

view should be defined and measured in or-

der to facilitate the effort to enhance quality

characteristics of end view during develop-

ment or maintenance of the software pro-

duct.

Hypothesis 1 : Activity quality characteristics

of SQuaRE’s product quality model are of

end view while the other product quality

characteristics are of means view.

Hypothesis 2 : Modularity is the only intrinsic

characteristic.

SQuaRE recognizes that causes and effects

should be distinguished : Internal software qual-

ity is mainly related to static properties of the

software and has an impact on external software

quality, which again has an impact on quality

in use [IOC/IEC 25030 : 2007]. If internal quality

and external quality correspond to the cause and

effect respectively, then a quality characteristic

cannot be both internal and external simulta-

neously. SQuaRE, however, does not specify

whether each product quality characteristic is

internal or external.

SQuaRE does not distinguish a characteristic

and the result of activity affected by the charac-

teristic too. For example, SQuaRE explains that

maintainability can be interpreted as either an

inherent capability of the product to facilitate

maintenance activities, or the quality in use ex-

perienced by the maintainers for the goal of

maintaining the product or system [ISO/IEC

25010 : 2011, p. 14]. According to this explana-

tion, by maintainability, SQuaRE refers simulta-

neously both the ‘capability’ of a software prod-

uct that affect both maintaining and quality in

use as the result of maintaining the product.

However, the one as an intrinsic characteristic

of the product influences the latter indirectly by

influencing maintaining the product. It is not de-

sirable to let the cause and effect have the same

name.

In fact, SQuaRE regards evaluating product

quality externally as estimating quality in use :

Quality in use can be assessed by observing

representative users carrying out representa-

tive tasks in a realistic context of use; its meas-

urement may be obtained by simulating a real-

istic working environment (for instance in a us-

ability laboratory) or by observing operational

use of the product; and some external usability

measures are tested in a similar way, but eval-

uate the use of particular product features dur-

Vol.23 No.3 Cause-and-Effect Perspective on Software Quality 79

Characteristic
Sub-

characteristic
Influences Depends on

Compatibility
Co-existence Installing System (software portfolio)

Interoperability Installing System (software portfolio)

Functional

suitability

Functional appropriateness Using Social and organizational environment (work and task)

Functional completeness Using Social and organizational environment (work and task)

Functional correctness Using Social and organizational environment (work and task)

Performance

efficiency

Capacity Using System (data volume and structure)

Resource utilization Using System (data volume and structure)

Time behavior Using System (data volume and structure)

Reliability

Availability Using System

Fault tolerance Using System

Maturity Using System

Recoverability Using System

Usability

User error protection Using System, environment (work and task, physical)

User interface aesthetics Using
System (interface device),

physical environment (illumination, noise, etc.)

<Table 3> Influence and Dependency of Contingency Quality Characteristics : A Subjective Ppinion

ing more general use of the product to achieve

a typical task as part of a test of the quality in

use [ISO/IEC 25022.2 : 2015]. Apparently, an es-

timate of something cannot be its cause.

Including activity quality characteristics in a

quality model has no effect other than declaring

that a software product should be good for the

activities associated with them. How much a

product will be good for such activity should be

estimated or forecasted during development or

maintenance of the product. The activity quality

characteristics, however, tell nothing about how

to make a software product good for software

activities. So, they are of end view.

The answer should be given by the means

view. For example, maintainability may be en-

hanced by enhancing modularity. Usability seems

to be enhanced by enhancing functionality suit-

ability, performance efficiency, reliability, and/or

all of their sub-characteristics. Usability can be

enhanced by enhancing its two non-activity sub-

characteristics too. Installability seems to be en-

hanced by enhancing compatibility. <Table 3>

shows the author’s subjective opinion on the

cause and effect relationships between contin-

gency quality characteristics and activity quality

characteristics. <Table 3> also shows the au-

thor’s subjective opinion on the dependency of

contingency quality characteristics. The con-

tents of <Table 3> should be elaborated much

more.

Modularity is the typical example of intrinsic

quality characteristic. It is obvious that modu-

larity cannot be measured externally. Whether

user error protection is intrinsic or not depends

on how user error is defined. If user error is de-

fined to depend on external factors outside the

target product, then it cannot be intrinsic. If user

error is defined not to depend on external fac-

tors, however, then the usefulness of user error

80 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

protection as a quality characteristic seems to

diminish. So, it seems better to define user error

to depend on contexts.

4. Conclusions

This paper proposes a new software quality

model composed of a hierarchy of software qua-

lity views and three software quality characteri-

stics models. The software view hierarchy is

composed of two levels : end view and means

view at the first level, contingency view and in-

trinsic view as sub-views of means view. Three

software quality characteristics models are ac-

tivity quality characteristics model, contingency

quality characteristics model, and intrinsic qua-

lity characteristics model, which correspond to

end view, contingency view, and intrinsic view

respectively. The intrinsic quality characteristic

is defined as the quality characteristic that is not

dependent on anything other than the product

itself.

In this paper, security, replaceability, and re-

usability are excluded from discussions about

software product quality. Security is regarded

as a quality characteristic of a system. That is,

the portion of influence that individual applica-

tions exert on security of a system is regarded

negligible. Replaceability is regarded as a com-

posite characteristic of installability and compa-

tibility. Reusability is regarded a characteristics

of a module or component rather than that of

a software product.

This paper reclassifies ISO/IEC 25000 Series

SQuaRE’s remaining software product quality

characteristics according to the proposed soft-

ware quality model : usability along with its

sub-characteristics excluding user error pro-

tection and user interface aesthetics, maintain-

ability along with its sub-characteristics ex-

cluding modularity, and portability along with

its sub-characteristics installability and adapt-

ability into activity quality; modularity into in-

trinsic quality; and the other characteristics into

contingency quality.

Activity quality characteristics declare what

the software product should good for. A soft-

ware product should good for various software

activities such as using, maintaining, and por-

ting. So, software activities constitute the end

regarding software quality. The types of soft-

ware activity in SQuaRE’s product quality mod-

el, however, are not sufficiently comprehensive.

Moreover, the classification hierarchy is even

misleading. A software activity classification

hierarchy which is exhaustive and mutually ex-

clusive should be developed. The classification

criteria should be clearly specified too.

The quality model of means view as a whole

should be defined to facilitate enhancing activity

quality. Each quality characteristic of end view

should be enhanced by enhancing some quality

characteristic of means view. If not, the model

is not sufficiently comprehensive. At the same

time, some quality characteristic should be en-

hanced by enhancing a quality characteristic of

means view. If not, such a quality characteristic

of means view is of little use.

During development or maintenance of a soft-

ware product, the developer or maintainer should

be able to enhance quality characteristics of

means view to enhance activity quality of the

Vol.23 No.3 Cause-and-Effect Perspective on Software Quality 81

product. A valid and reliable measurement of

activity quality is frequently unavailable. Espe-

cially when an executable version is unavailable,

a valid and reliable measurement of usability

cannot be obtained. So, it should be possible to

measure quality characteristics of means view

validly and reliably even when an executable

version is unavailable.

Except modularity, all characteristics of SQuaRE’s

product quality model are defined to depend on

contexts, environment, or conditions. It is not

sure, however, what context, environments, and

conditions mean. They should be redefined more

specifically to get rid of such vagueness.

The quality of software is one of the most

fundamental issues of software : It means almost

everything except price of software products.

Without the proper consideration for software

quality, the software industry cannot develop

properly. Especially, purchasers and users of

software cannot be protected properly without

a proper consideration for software quality. The

academy should contribute to protect them by

establishing proper software quality models and

by influencing the software industry to increase

the quality of software products that it produces.

The proposed software quality model com-

posed of the characteristics discussed in this pa-

per is not sufficiently comprehensive. Much more

characteristics should be supplemented. More-

over, most of SQuaRE’s product quality charac-

teristics should be redefined and conceptually

clarified according to the views on which they

are rested. Only after that, rigorous empirical

researches will be relevant. Causal relationships

between activity quality characteristics and cha-

racteristics on means view should be empirically

researched.

References

[1] Abran, A. and Nguyenkim, H., “Measure-

ment of the Maintenance Process from a

Demand-Based Perspective”, Journal of Soft-

ware Maintenance : Research and Practice,

Vol. 5, No. 2, 1993, pp. 63-90.

[2] Al-Kilidar, H., Cox, K., and Kitchenham, B.,

“The Use and Usefulness of the ISO/IEC

9126 Quality Standard”, Proceedings of In-

ternational Symposium on Empirical Soft-

ware Engineering 2005, IEEE, 2005, pp. 126-

132.

[3] ANSI/IEEE Std. 729-1983, IEEE Standard

Glossary for Software Engineering Termi-

nology, 1983.

[4] Dekleva, S. M., “Software Maintenance : 1990

Status”, Journal of Software Maintenance :

Research and Practice, Vol. 4, No. 4, 1992,

pp. 233-247.

[5] Glass, R. L., “Results of the First IS State-

of-the-Practice Survey”, The Software Prac-

titioner, 1996, pp. 3-4.

[6] Haboush, A., Alnabhan, M., AL-Badareen,

A., Al-Nawayseh, M., and EL-Zagmouri,

B., “Investigating Software Maintainability

Development : A Case for ISO 9126”, Inter-

national J. of Computer Science Issues (IJCSI),

Vol. 11, No. 2, 2014, pp. 18-23.

[7] Hatton, L., “How Accurately Do Engineers

Predict Software Maintenance Tasks?”, Com-

puter, 2007, pp. 64-69.

[8] Helms, G. L. and Weiss, I. R., “Applications

82 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Software Maintenance : Can It Be Contro-

lled?”, ACM SIGMIS Database, Vol. 16,

No. 2, 1984, pp. 16-18.

[9] Herraiz, I., Rodriguez, D., Robles, G., and

Gonzalez-Barahona, J. M., “The Evolution

of the Laws of Software Evolution : A Dis-

cussion Based on a Systematic Literature

Review”, ACM Computing Surveys, Vol.

46, No. 2, 2013.

[10] IEEE, IEEE Std. 1219-1998, IEEE Stan-

dard for Software Maintenance, 1998.

[11] ISO/IEC, ISO/IEC 14764 : 2006, Software

Engineering-Software Life Cycle Processes-

Maintenance (2nd ed.), 2006-09-01.

[12] ISO/IEC 25010 : 2011, Software Enginee-

ring : Software Product Quality Require-

ments and Evaluation (SQuaRE) Quality

Model and Guide, ISO, 2011.

[13] ISO/IEC 25022.2 : 2015 Systems and Soft-

ware Engineering-Systems and Software

Quality Requirements and Evaluation (SQuaRE)

-Measurement of Quality in Use, ISO, 2015.

[14] ISO/IEC 25030 : 2007, Software engineer-

ing-Software product Quality Requirements

and Evaluation (SQuaRE)-Quality Require-

ments, ISO, 2005.

[15] Kemerer, C. F. and Slaughter, S. A., “Deter-

minants of Software Maintenance Profiles :

An Empirical Investigation”, Journal of Soft-

ware Maintenance : Research and Practice,

Vol. 9, No. 4, 1997, pp. 235-251.

[16] Kitchenham, B. and Pfleeger, S. L., “Soft-

ware Quality : The Elusive Target [special

issue section]”, Software, IEEE, Vol. 13, 1996,

pp. 12-21.

[17] Koh, S. and Han, M. P., “Purposes, Results,

and Types of Software Post Life Cycle

Changes”, Journal of Information Techno-

logy Applications and Management, Vol.

22, No. 3, 2015, pp. 143-167.

[18] Koh, S. and Whang, J., “A Critical Review

on ISO/IEC 25000 SQuaRE Model”, Pro-

ceedings of the 15
th
 International Confe-

rence on IT Applications and Manage-

ment : Mobility, Culture and Tourism in

the Digitalized World, (ITAM15), 2016, pp.

42-52.

[19] Lientz, B. and Swanson, B., Software Main-

tenance Management, Addison-Wesley, Rea-

ding, MA, 1980.

[20] Sneed, H. M., “A Cost Model for Software

Maintenance & Evolution”, Proceedings of

the 20th IEEE International Conference on

Software Maintenance (ICSM’04), 2004.

Vol.23 No.3 Cause-and-Effect Perspective on Software Quality 83

<Appendix>

Definitions1) of ISO/IEC 25010 : 2011 Product Quality Characteristics and Sub-Characteristics

∙Compatibility : degree to which a product, system or component can exchange information with

other products, systems or components, and/or perform its required functions, while sharing the

same hardware or software environment

 - Co-existence : degree to which a product can perform its required functions efficiently while

sharing a common environment and resources with other products, without detrimental impact

on any other product

 - Interoperability : degree to which two or more systems, products or components can exchange

information and use the information that has been exchanged.

∙Functional suitability : degree to which a product or system provides functions that meet stated

and implied needs when used under specified conditions.

 - Functional appropriateness : degree to which the functions facilitate the accomplishment of specified

tasks and objectives.

 - Functional completeness : degree to which the set of functions covers all the specified tasks and

user objectives.

 - Functional correctness : degree to which a product or system provides the correct results with

the needed degree of precision.

∙Maintainability : degree of effectiveness and efficiency with which a product or system can be

modified by the intended maintainers

 - Analyzability : degree of effectiveness and efficiency with which it is possible to assess the

impact on a product or system of an intended change to one or more of its parts, or to diagnose

a product for deficiencies or causes of failures, or to identify parts to be modified

 - Modifiability : degree to which a product or system can be effectively and efficiently modified

without introducing defects or degrading existing product quality

 - Modularity: degree to which a system or computer program is composed of discrete components

such that a change to one component has minimal impact on other components

 - Reusability : degree to which an asset can be used in more than one system, or in building

other assets

 - Testability : degree of effectiveness and efficiency with which test criteria can be established

for a system, product or component and tests can be performed to determine whether those criteria

have been met

1) All the definitions and notes in this appendix are cited unchanged from their original expressions.

84 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

∙Performance efficiency : performance relative to the amount of resources used under stated conditions.

 - Capacity : degree to which the maximum limits of a product or system parameter meet requirements.

 - Resource utilization : degree to which the amounts and types of resources used by a product or

system, when performing its functions, meet requirements.

 - Time behavior : degree to which the response and processing times and throughput rates of a

product or system, when performing its functions, meet requirements.

 - information and use the information that has been exchanged

∙Portability : degree of effectiveness and efficiency with which a system, product or component

can be transferred from one hardware, software or other operational or usage environment to another

 - Adaptability : degree to which a product or system can effectively and efficiently be adapted

for different or evolving hardware, software or other operational or usage environments

 - Installability : degree of effectiveness and efficiency with which a product or system can be

successfully installed and/or uninstalled in a specified environment

 - Replaceability : degree to which a product can replace another specified software product for the

same purpose in the same environment.

∙Reliability : degree to which a system, product, or component performs specified functions under

specified conditions for a specified period of time.

 - Availability : degree to which a system, product, or component is operational and accessible

when required for use.

 - Fault tolerance : degree to which a system, product, or component operates as intended despite

the presence of hardware or software faults.

 - Maturity : degree to which a system meets need for reliability under normal operation.

 - Recoverability : degree to which, in the event of an interruption or a failure, a product or system

can recover the data directly affected and re-establish the desired state of the system.

∙Security : degree to which a product of system protects information and data so that persons or

other products of systems have the degree of data access appropriate to their types and levels of

authorization.

 - Accountability : degree to which the actions of an entity can be traced uniquely to the entity.

 - Authenticity : degree to which the identity of a subject or resource can be proved to be the one

claimed.

 - Confidentiality : degree to which a product of system ensured that data are accessible only to

those authorized to have access.

 - Integrity : degree to which a system, product or component prevents unauthorized access to, or

modification of, computer programs or data.

 - Non-repudiation : degree to which actions or events can be proven to have taken places, so that

the events or actions cannot be repudiated later.

Vol.23 No.3 Cause-and-Effect Perspective on Software Quality 85

∙Usability : degree to which a product or system can be used by specified users to achieve specified

goals with effectiveness, efficiency and satisfaction in a specified context of use.

 - Accessibility : degree to which a product or system can be used by people with the widest

range of characteristics and capabilities to achieve a specified goal in a specified context of use.

 - Appropriateness recognizability : degree to which users can recognize whether a product or

system is appropriate for their needs.

 - Learnability : degree to which a product or system can be used by specified users to achieve

specified goals of learning to use the product or system with effectiveness, efficiency, freedom

from risk and satisfaction in a specified context of use.

 - Operability : degree to which a product or system has attributes that make it easy to operate

and control

 - User error protection : degree to which a system protects users against making errors.

 - User interface aesthetics : degree to which a user interface enables pleasing and satisfying interaction

for the user

86 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Author Profile

Seokha Koh

Seokha Koh is the professor

of the Department of MIS,

Chungbuk National University.

His current primary research

areas include Software Quality

Management, Business Process Modeling, Soft-

ware Architecture, Project Management, and

Software Engineering.

