DOI QR코드

DOI QR Code

Buckling assessment of dented truncated cones under external pressure

  • Received : 2016.04.18
  • Accepted : 2016.08.18
  • Published : 2016.10.25

Abstract

Notwithstanding a considerable body of references in the literature on the buckling response of conical shell structures, it seems imperative to provide further insight on the buckling response of locally imperfect steel cones. This paper contains different simulations including non-linear FE analysis and discusses the influence of dent imperfection on the buckling load of these structures subject to external pressure. Data of the present work are evaluated against available experimental results, codes and recommendations and the effect of the local damages is exhaustively set forth. It is also found that the employed FE program can reliably predict the structural response of locally damaged conical shells.

Keywords

References

  1. Battles, E., H. Dagher and B. Abdel-Magid (2000), "Durability of composite reinforcement for timber bridges", Transportation Research Record: J. Transport. Res. Board, (1696), 131-135.
  2. Dagher, H., M. Bragdon and R. Lindyberg (2002), "Advanced fiber-reinforced polymer-wood composites in transportation applications", Transportation Research Record: J. Transport. Res. Board, (1814), 237-242.
  3. Fatemi, S.M., H. Showkati and M. Maali (2013), "Experiments on imperfect cylindrical shells under uniform external pressure", Thin-Wall. Struct., 65, 14-25. https://doi.org/10.1016/j.tws.2013.01.004
  4. Ghanbari Ghazijahani, T., H. Jiao and D. Holloway (2014a), "Experimental study on damaged cylindrical shells under compression", Thin-Wall.Struct., 80, 13-21. https://doi.org/10.1016/j.tws.2014.02.029
  5. Ghanbari Ghazijahani, T., H. Jiao and D. Holloway (2014b), "Experiments on dented cylindrical shells under peripheral pressure", Thin-Wall. Struct., 84, 50-58. https://doi.org/10.1016/j.tws.2014.05.012
  6. Ghanbari Ghazijahani, T., H. Jiao and D. Holloway (2015a), "Experiments on dented steel tubes under bending", Adv. Struct. Eng., 18(11), 1807-1818. https://doi.org/10.1260/1369-4332.18.11.1807
  7. Ghanbari Ghazijahani, T., H. Jiao and D. Holloway (2015b), "Fatigue tests of damaged tubes under flexural loading", Steel Compos. Struct., 19(1), 223-236. https://doi.org/10.12989/scs.2015.19.1.223
  8. Ghanbari Ghazijahani, T., H. Jiao and D. Holloway (2015c), "Plastic buckling of dented steel circular tubes under axial compression: An experimental study", Thin-Wall. Struct., 92, 48-54. https://doi.org/10.1016/j.tws.2015.02.018
  9. Ghanbari Ghazijahani, T., H. Jiao and D. Holloway (December 2015), Recent Advances on the Behavior of Locally Damaged Circular Steel Hollow Sections, PLSE 2015, Brisbane, Australia.
  10. Ghanbari Ghazijahani, T. and H. Showkati (2012), Bending Experiments on Thin Cylindrical Shells, Materials with Complex Behaviour II, Springer, 119-139.
  11. Ghanbari Ghazijahani, T. and H. Showkati (2013), "An experimental investigation on interactive behavior of thin walled cylindrical shells", Materialwissenschaft und Werkstofftechnik, 44(5), 386-394. https://doi.org/10.1002/mawe.201300141
  12. Ghanbari Ghazijahani, T. and H. Showkati (2013), "Experiments on cylindrical shells under pure bending and external pressure", J. Constr. Steel Res., 88, 109-122. https://doi.org/10.1016/j.jcsr.2013.04.009
  13. Ghanbari Ghazijahani, T. and T. Zirakian (2014), "Determination of buckling loads of conical shells using extrapolation techniques", Thin-Wall. Struct., 74, 292-299. https://doi.org/10.1016/j.tws.2013.09.003
  14. Ghanbari, T., A. Teymourzadeh and H. Showkati (2010), The Effect of Dent Imperfection on Conical Shell Behavior under External Pressure, 5NCCE, Ferdowsi University, Mashhad, Iran.
  15. Ghazijahani, T.G. and H. Showkati (2011), "Experiments on conical shell reducers under uniform external pressure", J. Constr. Steel Res., 67(10), 1506-1515. https://doi.org/10.1016/j.jcsr.2011.03.024
  16. Ghazijahani, T.G. and H. Showkati (2013), "Locally imperfect conical shells under uniform external pressure", Strength Mater., 45(3), 369-377. https://doi.org/10.1007/s11223-013-9467-9
  17. Golzan, B. and H. Showkati (2008), "Buckling of thin-walled conical shells under uniform external pressure", Thin-Wall. Struct., 46(5), 516-529. https://doi.org/10.1016/j.tws.2007.10.011
  18. Holst, J.M.F., J.M. Rotter and C.R. Calladine (1999), "Imperfections in cylindrical shells resulting from fabrication misfits", J. Eng. Mech., 125(4), 410-418. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:4(410)
  19. Imani, K., H. Showkati and T. Ghanbari Ghazijahani (2013), "Bending experiments on reinforced circular thin plates under uniform pressure", J. Constr. Steel Res., 80, 308-316. https://doi.org/10.1016/j.jcsr.2012.08.001
  20. Jawad, M.H. (1994), Theory and design of plate and shell structures, Chapman & Hall.
  21. Maali, M., H. Showkati and S. Mahdi Fatemi (2012), "Investigation of the buckling behavior of conical shells under weld-induced imperfections", Thin-Wall. Struct., 57, 13-24. https://doi.org/10.1016/j.tws.2012.04.003
  22. MacKay, J. and F. Van Keulen (2010), "A review of external pressure testing techniques for shells including a novel volume-control method", Exper. Mech., 50(6), 753-772. https://doi.org/10.1007/s11340-009-9272-3
  23. Niloufari, A., H. Showkati, M. Maali and S. Mahdi Fatemi (2014), "Experimental investigation on the effect of geometric imperfections on the buckling and post-buckling behavior of steel tanks under hydrostatic pressure", Thin-Wall. Struct., 74, 59-69. https://doi.org/10.1016/j.tws.2013.09.005
  24. Ozkan, I.F. and M. Mohareb (2009), "Moment resistance of steel pipes subjected to combined loads", Int. J. Press. Vessel. Piping, 86(4), 252-264. https://doi.org/10.1016/j.ijpvp.2008.11.013
  25. Prabu, B., N. Bujjibabu, S. Saravanan and A. Venkatraman (2007), "Effect of a dent of different sizes and angles of inclination on buckling strength of a short stainless steel cylindrical shell subjected to uniform axial compression", Adv. Struct. Eng., 10(5), 581-591. https://doi.org/10.1260/136943307782417735
  26. Prabu, B., A. Raviprakash and A. Venkatraman (2010), "Parametric study on buckling behaviour of dented short carbon steel cylindrical shell subjected to uniform axial compression", Thin-Wall. Struct., 48(8), 639-649. https://doi.org/10.1016/j.tws.2010.02.009
  27. Rathinam, N. and B. Prabu (2013), "Static buckling analysis of thin cylindrical shell with centrally located dent under uniform lateral pressure", Int. J. Steel Struct., 13(3), 509-518. https://doi.org/10.1007/s13296-013-3010-5
  28. Raviprakash, A., B. Prabu and N. Alagumurthi (2012), "Effect of size and orientation of a centrally located dent on the ultimate strength of a thin square steel plate under axial compression", Int. J. Steel Struct., 12(1), 47-58. https://doi.org/10.1007/s13296-012-1005-2
  29. Riks, E. (1979), "An incremental approach to the solution of snapping and buckling problems", Int. J. Solid. Struct., 15(7), 529-551. https://doi.org/10.1016/0020-7683(79)90081-7
  30. Ross, C., D. Sawkins, J. Thomas and A. Little (1999), "Plastic collapse of circular conical shells under uniform external pressure", Adv. Eng. Softw., 30(9), 631-647. https://doi.org/10.1016/S0965-9978(98)00099-4
  31. Ross, C.T. (2007), "A proposed design chart to predict the inelastic buckling pressures for conical shells under uniform external pressure", Marine Technol., 44(2), 77-81.
  32. Shen, H.-S. and T.-Y. Chen (1991), "Buckling and postbuckling behaviour of cylindrical shells under combined external pressure and axial compression", Thin-Wall. Struct., 12(4), 321-334. https://doi.org/10.1016/0263-8231(91)90032-E
  33. Stevens, N.D. and G.K. Criner (2000), B848: Economic Analysis of Fiber-Reinforced Polymer Wood Beams.
  34. Ventsel, E. and T. Krauthammer (2001), Thin plates and shells: theory: analysis, and applications, CRC press.