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A CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT
METHOD FOR SOBOLEV EQUATIONS

Mi RAy OHM AND JUN YONG SHIN®

ABSTRACT. A Crank-Nicolson characteristic finite element method is in-
troduced to construct approximate solutions of a Sobolev equation with a
convection term. The higher order of convergences in the temporal direc-
tion and in the spatial direction in L? normed space are verified for the
Crank-Nicolson characteristic finite element method.

1. Introduction

In this paper, we consider the following Sobolev equation with a convection
term: Find u(z,t) defined on Q x [0, T] such that

c(x)uy + d(z) - Vu— V- (a(u)Vu) — V- (b(u)Vuy)
= f(z,t,u), in Q x (0,77,
u(z,t) =0, on 092 x (0,77,
u(a:, 0) = UO(w)v in 0,

(1.1)

where 2 C R™, 1 < m < 3, is a bounded convex domain with boundary 0f2
and ¢, d,a,b and f are known functions. The study of Sobolev equations is
very important because Sobolev equations describe physical phenomena such
as thermodynamics [20], the migration of the moisture in soil [17], the flow
of fluids through fissured rock [2] and other applications. For the existence,
uniqueness, and regularity of the solutions of the Sobolev equation (1.1), we
refer to [3, 4, 20].

For Sobolev equations without a convection term, many mathematicians
achieve the numerical results by classical finite element methods [1, 6, 10, 11, 12]
or least-squares methods [9, 15, 16, 21, 22] or mixed finite element methods [8]
or discontinuous finite element methods [13, 14, 18, 19]. But in many situations,
the convection term d(x) - Vu exists and d(x) is large in order to describe a
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convection dominated diffusion. To treat the time derivative term and the con-
vection term effectively, we use a characteristic method which is natural from
the physical point of view and works well for convection dominated diffusion
problems as shown in [5, 7]. In [7], the author construct a characteristic finite
element method to obtain the higher order of convergence in the spatial vari-
able and the first order of convergence in the temporal variable. But the latter
makes the former meaningless.

In this paper, a Crank-Nicolson characteristic finite element method is in-
troduced to construct approximate solutions of the Sobolev equation with a
convection term and establish the higher order of convergences in the temporal
direction and in the spatial direction in L? normed space for the Crank-Nicolson
characteristic finite element method. Our paper is organized as follows. In Sec-
tion 2, we present the smoothness assumptions for u(z, t), the conditions for the
given functions, and basic notations. In Section 3, we construct finite element
spaces and derive basic approximation properties. In Section 4, we construct a
Crank-Nicolson characteristic finite element approximation of u(x, t) and obtain
the higher order of convergence in L? and H'! normed spaces.

2. Assumptions and notations

Throughout this paper, W*P () denotes the Sobolev space equipped with its
norm ||-||s, for an s > 0 and 1 < p < co. For our convenience, we simply denote
H*(Q) and L?(9), instead of W*2(Q) and H°(Q), respectively. And we denote
-1l || - lloos and || - ||s, instead of || - [lo,2, || - l0,00, and || - ||s,2, respectively. Let
H?(Q) = {w = (w1, wa, ..., wn) | w; € H?(Q),1 <i < m} be a Sobolev space

equipped with its norm ||w]|? = Z lwi||? and HE(Q) = {w € HY(Q) | w(z) =

0 on 99}. For a given Banach space X and ty,ty € [0,T], we introduce Sobolev
spaces with the corresponding norms:

W2 (b1, 05 X) = {w(@t) | 155 (. 0)llx € LP(t,82),0 < B < s,

atﬁ(»)

where

/p
(Z; Of atﬁ '7 |pdt) ) 1<p<oo,
||wHWS~P(t1,t2;X) =

5
maro<p<s eSSSUPte(tl,tQ)||%7(',t)||xa p = oo.

We simply write LF (X) and W*®(X) instead of WP (0, T; X) and W*?(0, T; X),

respectively.

Assume that u(z,t) and c(z), d(x) = (di(x),d2(x), ..., dpn(x))T, a(u), b(u)
and f(z,t,u) satisfy the following assumptions:

(A1) There exists a positive constant K such that lu(z,t)|| Lo ooy < K.
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(A2) There exist constants cy,c*,d*, as,a*, b, and b* such that 0 < ¢, <
clx) <c*, 0<|d(z)] <d*, 0<a, <a(u) <a*, 0<b, <b(u) <b*,
for all x € Q and ¢ € [0,T], where |d(z)| = Z d2( ).

(A3) a(u),ay(w), ayy(uw),b(w), by (u) and by, (u) are bounded

(A4) f(z,t,u) is locally Lipschitz continuous in the third variable, ie. if
lu(z,t) —u*| < K then |f(z, ¢, u(z, t)— f(@, t,u")| < K(u, K)|u(z,t)—

For each (z,t), we let v = v(x, t) be the unit vector such that g%j = 12((?) %7; +

Zgz; - Vu, where ¢(z) = [¢(x)? 4 |d(z)|?]2. Then the Sobolev equation (1.1)
can be rewritten as follows

w(m)a—u =V (a(u)Vu) = V- (b(u)Vu) = f(z,t,u), in Q x (0,77,

v
w(z,t) =0, on 9 x (0,7, (2.1)
u(x,0) = ug(x), in Q.

Now the variational formulation of the equation (2.1) is given as follows: Find
u(z,t) € H}(Q) such that

(w(w)g—z, 7) + (a(u)Vu, V1) + (b(u)Vue, V)

— (f(a,t,u),7), vr € HY(Q),  (22)
u(z,0) = uo(x).

3. Finite element spaces and an elliptic projection

For h > 0, let {S}} be a family of finite dimensional subspaces of HO Q)
satisfying the following approximation and inverse properties: for ¢ € Hg(£2) N
WP (), there exist a positive constant K, independent of h, ¢, and r, and a
sequence Pp¢ € S} such that for any 0 < ¢ < sand 1 <p < oo,

16 — Pudllgp < Kih" = @]s,p,
where ¢ = min(r + 1, s) and

lells < Kih™Hlell and [|olloe < Kih™ % |Jol|, Vi € S}

Now we introduce bilinear forms A and B defined on HE(Q) x H(Q) as
follows

A(u : v,w) = (a(u)Vo,Vw), B(u:v,w) = (b(u)Vv, Vw). (3.1)

By the assumption (A2), it is clear that there exists a unique @(t) € S}, satisfying
Alw:u—1a,x) + Blu:u, — g, x) =0, Vx € S,

(@(0), x) = (uo, x),  Vx € Sh-

Now letting n = u — @, we obtain some estimates for 1, ny, ¢, and 7y whose
proofs can be found in [13, 14].

(3.2)
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Theorem 3.1. Let ug € H*(Q), ug, us, uger € H¥(Q), and uy € L?>(H*(Q)).
Then there exists a constant K, independent of h, such that

@) Ml + Rlinlly < KR (w220 ) + lluolls),

(i) [|mell + Rllmells < KR (fuell L2 e @) + lluolls + lluells),

() [|neells < KR (luell 2 ey + lluolls + uells + [lueells),

(V) lmeeells < KB (uellzacar ) + lluolls + lluells + llueells + lueeells),

where p = min(r + 1, s) and s > 2.

Throughout this paper, K denotes a generic positive constant depending on
the domain Q, K, u(x,t) but independent of the discretization magnitudes of
spatial and temporal directions. So any two Ks in the different places don’t
need to be the same.

4. The optimal L>(L%(Q)) and L>*(H'(f))) error estimates

Let N be a positive integer, At = T/N and t" = nAt, for 0 < n < N. By the
definitions of bilinear forms A and B, (3) can be rewritten as follows:

(wm%,x) A=) s w0 )
Blu(t"™#) : w ("7 %),x) = (f(u(t""#)).x), ¥x €5,

(1=
where f(u(t""2)) = f(z, " 2,u(t""2)) And so (4.1) can be rewritten as fol-

lows:
~mn ~n—1

(el) ™57 x) + AW ) s E )
+ Bty
= (3o + e Ty 20y )
FAETE)  u"TE —u(tT2), x)
4By LT @), e S
where " = u"(z), 4"~ = u""H&), 2 = z + $d(z)At, & = z — 1d(z)At,

d(z) = ‘Z((:)), and u""z = L(u" —|—u”’1).
We now introduce a Crank-Nicolson characteristic finite element scheme:
Find {u}} € S} such that forn=1,2,...,N

n ~n—1

i n_l n_l
(el@) ™= x) + (alu, *)Vu; "2, V)

n—1. Vuj = Vup ™! _ppon—} .
+ (blup ™ H o V) = ()0, VX E ST

up () =z, 0),



A CRANK-NICOLSON CFEM FOR SOBOLEV EQUATIONS 733

Where an = u(z), 4yt = uZ 1(3%) r=x+ 1d( AL, & =z —

n— n— ~ nf— _1 -1
Uy, g —é(uh +uy 1)’ d(w): (x)a df( ?) = (f(z,t" : uh 7).
definitions of bilinear forms A and B, (4.3) can be rewritten as follows:

(cla) =gt x) + Al w0 4 Bl Sty

= (f(W)7?),x), WX €S

Lemma 4.1. Let ug € H*(Q), u,us, ugy, uyy € L°(H*(2)) N L® (W2 (Q)),
uy € L*(H*(Q)) and s > 2. If p > 1+ 2, then the following statements hold:

max{[[nllos, IV0loes [VOnlloos Velloos IVneelloos [IVneeelloc} < K.

Proof. By the approximation property, the inverse property, Theorem 3.1, and
the fact that p > 1+ %, we obtain

IVilloo < IV(u = Pru)fleo + [V(Pru — @)l

< IV (u = Pot)lloc + Ch™ % ||V (Pru — a)|

< IIV(u = Pyu)lloo + Ch™ % (||V (u = Pyw)|| + [V (u — @)]))
[

Ea[llullioo + ™ E 7 (lulls + lluell 22 + [luolls)],

so that ||[V7||s is bounded by K. By similar arguments, we can prove the
boundedness of [[n]loo, [VOnloo: Vtlloo, [[Viutlloo and [Vl O

n__¢en—1
For our convenience of error analysis, we denote £ = up, —u, " = § Agt .

Theorem 4.1. In addition to the assumptions of Lemma 4.1, ifu € L>=(H3(Q)),
p>1+ %, and At = O(h), then

IVEN? + At(|a:€ |* + [IVOE*) < KAH R + (At)Y),

where p = min(r + 1, s).
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Proof. To obtain our result, we subtract (4.2) from (4.4) with n = 1 and take
x = O:€! to get

(C(w)atfl,atfl)‘*‘f‘l(“;% : 5%781651)4‘3(“;% 0 08, 0E)
17 0 40 1 a1
(L 0 (0L ) (052 )
1 -0

_ 0 0 . )
+(c(m)77 At” ,atgl) _ (c(m)” At” ,8t£1>+A(uZ - nE,0,6Y)

+ [Aue) - uf, ) — Alu? ut,0,")]

PR R
+ B(up Az ,0,Eh)
wl — uf ul — 0

o0 — Blu 0]

F(Fud) — Fu(t?)), 0EY) + Au(t?) : ult?) —u?, 0,6

1 1 L0
+ Blu(t?) s ug(th) - = 0¢")
u(ts it — 40
= ()75, e 0)
13
:Z[i.
=1

By the assumption (A2) and the fact that £0 = 0, we estimate the left hand-side
of (4.5) as follows:

13

Gx

O |? + b [VOE | + S IVEN < DI (4.6)
i=1

By the assumption (A2), the Cauchy-Schwartz inequality, and the fact that
&9 =0, we estimate I; ~ Iy as follows: for an € > 0

Iy < e o' |? + K[ Ve,

I < e o' |? + K[ VE°|?,

Is < ([0 17 + IVOL1?) + Kl |17,
Iy < e |I? + K lmf |17,

Is < e([0:1 17 + IVOL 1) + Kl
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To get the bound for the sum of Is and Ig, by using (3.2), we split it into four
terms as follows:

1 1 1 1

2)) — alug)| V>, Vo)

1 1 1_ 0
+ (b)) - Y v
)

+ (a(u(t®))[Vn(t?) — V], Vo,e?)

+ (b(u(t%)) [Vnt(t%) - %tvno} ) Vatfl)

=h+Jo+Jds+ Ja.

Is + Is =([a(u(t

Note that
hup — ) = Juf — @ + a3 —a(ed) + a(ed) — u(ed)]
= llg# +a% —a(t?) — n(t?)| (4.7)
< K(||€Y + h* + (A1)?).
By Lemma 4.1 and (4.7), the bounds for J; and J> can be obtained as follows:

Ji < e|[VOLP + K(|[€]° + h* + (At)Y)

and
Jo < €| VO + K([[€1* + h? + (At)Y).
Since [|Vn(t2)—=Vn? ||+ Vi (t3)— YLV | < K(At)? by the Taylor expansion

and Theorem 3.1, we have
s+ Ju < €| VO + K(At)™.

Hence we get
Is + Iy < 3| VOL* + K(|E]* + h* + (At)*).

By (4.7), the estimates for I7, I1o, and I1; can be obtained as follows:
I < €| Vo> + K(IEH* + h* + (A1),

Lo < €l|VOE? + K([IE7 + h** + (At)*Y),
Ly < |0 ))® + K (|12 + ?* + (At)*).

Now we estimates for Ig and I3 as follows:
Is < €| VO£ |? + K(At)*,
Lz < €||[VO£H? + K(At)*.
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By the Taylor expansion, there exist t} € (t%,tl),tg € (t°,t2),&g; € (&, ), and
Zg; € (T, ), 1 <i <3, satistying

Au(t?) at — 4
—c(w)ut(t%) +d(z) - Vu(t?)
—elw) - [aeh) + Slaneh) + B ) + B )
2 3
_ (a(td) - %at(t%) + (A;) g (£2) — (i? ﬂm(tg))}
—c(@)u(t?) + d() - Vu(t?)
—c(w)é[(u(t%)+ %Atd Vu(t?) + S(dAL? - V2u(th)
+ %(&At)g’ VPu(@on, 1))
4 2 (1) + SN V(1) + L(AAN? - V(s 1))
+ (Agt) (utt(t%) + %&At . Vutt(1937t%)) + %(At)?’ﬁttt(té)
C(u(t}) = SaAL- Va(th) + L(@A? - V2u(th)
- %(‘EM)3 - VPu(igr, 1))
+ %(ut(t%) - %&At Vu(th) + é(&At)z V2 (2, 13))
2 ~ 1
B (t) = 2L T, ) + o (A (1)

1 -3 1 1 -~2 1
:fc(m)(At)Q[@d VPu(@or,th) + 7od - Vun(@on, 1)

1 - . 1 1.
+ —d - Vutt(mgg,ﬂ) 7uttt(t(]§)

16 * 48
1 ~3 R 1 1 -2 - 3
+ 5 VPu(@an, th) + od - Vuy(@a. 1)
1 - Lo,y 1
+ Ed . Vutt(we?nté) + @Uttt(tg)

, - I i YIEE ) .
where d’ - (Viuntl) = ZZ:O (7)d]~"db a?c{“axg for j =2 and j = 3 when m = 2

and we use similar notations when m = 3. From the assumptions of wu, u;, us,
and ugr, we get

[I12] < K(At)* + €]|0,&M .
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Now using the estimates for Iy ~ I3, we obtain from (4.6)
12 12, bs 12

€ + b0 + e Ve

< TP + 9 Vo P + K (€M1 + [IVEHI* + 12 + (A1),

which yields that for sufficiently small €

c At|0E I + b A VOEN + b. ]| VE
< KAL(IEN® + [IVE* + h2 + (At)").

By Poincare’s inequality, we have [|¢1]|2 4 ||[VEH|? < K||[VE||2. If we choose At
sufficiently small so that b, — KAt > 0, then we get

co AL||0uEY|? + b AL|VOEY? + af| VEH|? < KAL(R? + (At)?Y)
and so we have
IVEH]? + At(|0:EM|* + VO |*)+ < KALR™ + (At)Y], (4.8)

which completes the proof. O

Theorem 4.2. In addition to the assumptions of Lemma 4.1, ifu € L>(H3(Q)),
pw>14+ 2 and At = O(h), then

27

mase [ il + WV — )] < K"+ (A02),

0<n<N
where p = min(r + 1, s).

Proof. To establish this theorem, we prove the following statement by mathe-
matical induction: There exist 0 < h < 1 and 0 < At < 1 such that

IVE* + At(|0:" 17 + Vg™ ) < K (b + (At)*) (4.9)

for any 0 < h < fz, 0< At <At andn =0,1,...,N. For our convenience, we
abuse the notations such as Eu) = 0 and £71 = 0. Since &Y = 0, (4.9) trivially
holds for n = 0. And by Theorem 4.1, (4.9) holds for n = 1. Now we assume
that (4.9) holds with n < [ — 1. Notice that [|£"]s < K, 0 < n < [ — 1.
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Subtracting (4.2) from (4.4) with x = 9;£™ for 2 < n <1, we get

(w)atfn,3t§n> +A(U27% : fn_%vatfn)+3(u27% : 5’t§n73t§n>

(
=(¢

n ) fn—1 _ ¢n—1
5L )+ (05 )
n __ »n n _ ,n—1
— (@) 06") + (cla) T — 0u€")
ﬁn—l_nn—l nol N
— (el@) T 0" ) + Al 0 TE, 0"
1 n _ pn—1
+Bluy, * 0"
AR a0 — Ay F s a0, (4.10)
n _ ,n—1 1 n_ ,n—1
+[But" %)) : ¥ AIZ L") — B(u) 7 %,atgn)}

+(Flup ) = Fult™ 1)), 0i")
+ A(u(t"™ 5): u(t"ii)—u 75,@5”)

n_ ,n—1
F B () - 0
Du(in—3 -
+ (w22 )T g
2131R

Now letting three terms of the left-hand side of (4.10) by L, Lo and L3, respec-
tively, we estimate the lower bounds of L1, Ly and L3 as follows:

Ly = (c(2)0€", 0,£") = cu]| 0™,
Ly=A(u) % : €75, 0,6")

ZE(II a(up #)VE? — |V alup F)vE|?)
1 ”—* n "—* n—
= oz (IValw, )VE I =1V a(w, *) Ve %)
+ o (W Hven2 = [ a(uyH)ver|P),

Ly = B(u, 2 : 0", 0,£") > b, ||V |2
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By applying the lower bounds of L; ~ L3 to (4.10), we get
ni2 n|2
|0 17 + b [[VOE™ |
1 _1 _3
- n—z ni2 _ n—s n—1/2
+amp Ve Hverr - Wa Hven
1 . ) 13
n—3z n—gy n—1 n—1
< g ((aluy ™) = aluy ) Ve, ve )+Z¥ﬁ
Notice that
U’Z _ u;L“Q _ uz —u " — un—2 4 un—2 _ u272

— gn _ nn T 2Atuf 4 ,r]n72 _ €n72
= AHBE™ + 8" — ™ — B + 2u],

IVE | < KR™™/2|WEMY,

and

||8tfn_1||oo < Kh_m/gnatfn_lll-

So, by the assumption (A3), the approximation property, the inverse property,
Theorem 3.1, At = O(h), and (4.9), we have

1 n—3 n—i — —
g (el ?) —a(w,”2) Ve, ven)

K n—2 n n—1 n—1
< _

<K (10" + 106" + 10en™ | + 100" M I + Nl [)VE™ T, VE" ™) (4.12)
<K[VE oo llO" IVE" 1|

10 e + 1007 o + 1007 o + 1 o) V€™ 2
SK||VE™ Y2 + el 0:™||2.
Hence, by (4.12), (4.11) can be estimated as follows:

e [0 1 + b [ VO™ |2

1 n—j np2 _ n—3 n—12
b a1 atuy Hver |2 — | agy Hvet )

13
< K|IVE" P + €0 P + ) Ri.

i=1

(4.13)
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By the assumption (A2) and the Taylor expansion, we have the following esti-
mates for R; and Ra:

Ry = (c(2) S 55 07) < KIVE P + eloen|?
gn—1 _gn-1 n n—112 n)|2
— A S <
Ry = (cl@) =, 01" ) < K||[V¢" 2 + e g
Since
" LGy dge)
At 2 ’ ’
n n—1
n—-n n
At = T}t(te)’
nnfl _ ﬁnfl 1v ~ tnfl ;1

for some tj € (t"71,t"), &, € (z,&) and T2 € (&, ), we have the estimates
for R3 ~ Rs
Ry < K|[n"[|* + €| VO™ |* + el| €™
< KW+ || VO™ * + €] 0™,
Ry < K| |I* + el 0™ |I?
< KW+ €07,
Rs < Klln"7H* + el VO™ |* + el 0™ |12
< KR + €| VOL" | + €l|0:6" 1.

To get the bound for the sum of Rg and Ry, by using (3.2), we can split it into
four terms as follows:

1 o1 vnn _ vnnfl

Re + R7 = (a(u,, z)vﬁn_%avatfn) + (b(uy, ?) AL , Vo)

= (Ja(u]~?) — a(u(~¥)] V", Va,en)

(bl ) — by =T

+ (a(u(t™ ) [V~ — Vy(t""2)], V™)

Vnn _ Vnn71
At

,VOLE™)

+ (b(u(t ) — U (t"7%)], V™)

=> T,

Jj=1
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Notice that
n—1 1 1 1 1 _1
w, > —u(t"T2) =" A" —a(t" ) - (" 2),
_ 1 /AtN\N2_ .
; (S st
17 ey At 10 1 AtN2 -
30 H = Fae )+ 5 (=) i)
a(t" )

=O((A)*) (st (t1,0) + st (F2,0)),

v — Gt ?) :%[ (t"2) + %at(tn—%) +
+

and
n—x n—1i 1 n n—1 n—3
ViR = Vn(ttTR) = S (Vi 4+ V) = V()
= O((A1)*)(Vine(t1,0) + Vet (t2,)),
for some ty 9 € (t"72,t"), {19 € (t"2,4"), tag € (1" 1,#772), and fop €
(tn1, t"’%). Hence the estimates for 77 ~ T are obtained as follows:
Ty < K[|V 2| [(A0)? + €7 %] + (")) VO™
S KJIE71P + 1€ P + h? 4+ (AN + €] Va7,
n n—3 n—3 n
Ty < K[|V |loo[(A) + €™ 2] + [In(t" ) ][I V0"
S K€ + 1€ P + b2 4 (ADY) + €] Va7,
T3 S K(At)4 + 6HV8,5§"||2,
Ty < K(AY)* + €| VO™,

which implies that
Rs + Ry < K[[[€"|1* + [|€"7I* + h? + (A)*] + € VO£ 2.
The estimate for Rg is given as follows:
Ry = (fau(t"~4)) = a(up, )] Vu"~¥, Vore")
< K€ + 1771 + b2+ (A1) + €| Vo™ >
The estimates for R9 and Rig can be obtained as follows:

Ro = ((b(u(e)) - bluy )~ voe)

< KM + €M + 12 + (A1) + €| Ve |?

and

(Flup ™) = F(u(t"™ %)), 0,E™)
< K€" 2 + €712 + B2 + (At)"] + €| Vo™ |2

Rio
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The estimates for Ry; ~ R13 are obtained as follows:

Ry =(a(u(t"™2))[Vu(t""2) = Vu" 2], VaE") < K (At)* + €| Va7,

V" - Va1
At

ou(t"2) an — anl

Ray =(0(0) =5, — ele) 5
Therefore, using the estimates for Ry ~ Ry3 in (4.13), we get
e [|0:€" |7 + b [V O™ |2
+ gz atay )V [y au;
SK{HVS”HQ HIVETHE 1€ + €I + (At)* + B2
+ell0€™ |1 + el Vo™ |7

Hence, for sufficiently small €, we obtain

At]9,€" | + Atl| Vo™

Rys :(b(u(t”—%)) [vut(t"—%) },vatg") < K(AD* + ]| Va2,

€™ ) < K (A + dlje” 2

Hyven12)

+ (a2 ver |2 = [V a(u) ™ ?)ver—1|2) (4.14)
< KAL[[VEP + €Y + €72 + €42 + (A)* + h].

Now we add both sides of (4.14) from n = 2 to [ to get

l
At (10|12 + V™2 + [V aluy, *)VE™
n=2

l l
< KAty {712 + V"2 + K ae > {(A0* + w2} + K|[VE'
n=1 n=0

So, by Theorem 4.1 and the Poincare’s inequality, we have

IVE 2+ At{|0:€1) + ||V}
-1
<SKALY {AH([|0:L77 + V™) + IVE™ P} + K{h™ + (At)*}

n=1

for sufficiently small At. Therefore, by Gronwall’s inequality, we have
IVEN? + At{[|0.€']1* + VO P} < K[h* + ()",

which completes the proof of the statement (4.9). By the triangle inequality
and the Poincare’s inequality, we finally have

Ju! = up || + RV (0! = up)|| < K (h* + (A1)?).
Thus the result of this theorem hold. O
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