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TRIPLED COINCIDENCE AND COMMON TRIPLED FIXED

POINT THEOREM FOR HYBRID PAIR OF MAPPINGS

SATISFYING NEW CONTRACTIVE CONDITION

Bhavana Deshpande and Amrish Handa

Abstract. We establish a tripled coincidence and common tripled fixed

point theorem for hybrid pair of mappings satisfying new contractive con-
dition. To find tripled coincidence points, we do not use the continuity of

any mapping involved therein. An example is also given to validate our

result. We improve, extend and generalize several known results.

1. Introduction and Preliminaries

Let (X, d) be a metric space. We denote by 2X the class of all nonempty
subsets of X, by CL(X) the class of all nonempty closed subsets of X, by CB(X)
the class of all nonempty closed bounded subsets of X and by K(X) the class
of all nonempty compact subsets of X. A functional H : CL(X) × CL(X) →
R+ ∪{+∞} is said to be the Pompeiu-Hausdorff generalized metric induced by
d is given by

H(A, B) =

{
max {supa∈AD(a, B), supb∈B D(b, A)} , if maximum exists,

+∞, otherwise,

for all A, B ∈ CL(X), where D(x, A) = infa∈A d(x, a) denote the distance from
x to A ⊂ X. For simplicity, if x ∈ X, we denote g(x) by gx.

Markin [31] initiated the study of fixed points for multivalued contractions
and non-expansive mappings using the Hausdorff metric, which was further
studied by several authors under different conditions. The multivalued the-
ory has found application in control theory, convex optimization, differential
inclusion and economics.

In [26], Guo and Lakshmikantham given the notion of coupled fixed point.
Gnana-Bhaskar and Lakshmikantham [12] proved some results on the existence
and uniqueness of coupled fixed points. Later on, Lakshmikantham and Ciric
[27] generalized these results for nonlinear contraction mappings by introducing
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the notions of coupled coincidence point and mixed g-monotone property. These
results are applied for proving the existence and uniqueness of the solution for
periodic boundary value problems. Berinde and Borcut [10] introduced the
concept of tripled fixed point for single valued mappings in partially ordered
metric spaces and established the existence of tripled fixed point of single-valued
mappings in partially ordered metric spaces. Samet et al. [34] claimed that most
of the coupled fixed point theorems for single valued mappings on ordered metric
spaces are consequences of well-known fixed point theorems. As a continuation
of this work, several results of a coupled and tripled fixed point have been
discussed in the recent literature including [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 25, 27, 29, 30, 32, 36].

The concepts related to coupled fixed point theory for multivalued mappings
were extended by Abbas et al. [3] and obtained coupled coincidence point
and common coupled fixed point theorems involving hybrid pair of mappings
satisfying generalized contractive conditions in complete metric spaces.

These concepts were extended by Deshpande et al. [22] to multivalued map-
pings and obtained tripled coincidence points and common tripled fixed point
theorems involving hybrid pair of mappings under generalized nonlinear contrac-
tion. Very few researchers focused on tripled fixed point theorems for hybrid
pair of mappings including [1, 2, 3, 16, 17, 18, 19, 20, 21, 22, 23, 24, 28, 35].

In [22], Deshpande et al. introduced the following for multivalued mappings:

Definition 1. Let X be a nonempty set, F : X × X × X → 2X and g be a
self-mapping on X. An element (x, y, z) ∈ X ×X ×X is called

(1) a tripled fixed point of F if x ∈ F (x, y, z), y ∈ F (y, z, x) and z ∈ F (z,
x, y).

(2) a tripled coincidence point of hybrid pair {F, g} if gx ∈ F (x, y, z),
gy ∈ F (y, z, x) and gz ∈ F (z, x, y).

(3) a common tripled fixed point of hybrid pair {F, g} if x = gx ∈ F (x, y,
z), y = gy ∈ F (y, z, x) and z = gz ∈ F (z, x, y).

We denote the set of tripled coincidence points of mappings F and g by C(F,
g). Note that if (x, y, z) ∈ C(F, g), then (y, z, x) and (z, x, y) are also in C(F,
g).

Definition 2. Let F : X ×X ×X → 2X be a multivalued mapping and g be
a self-mapping on X. The hybrid pair {F, g} is called w-compatible if gF (x, y,
z) ⊆ F (gx, gy, gz) whenever (x, y, z) ∈ C(F, g).

Definition 3. Let F : X ×X ×X → 2X be a multivalued mapping and g be
a self-mapping on X. The mapping g is called F -weakly commuting at some
point (x, y, z) ∈ X ×X ×X if g2x ∈ F (gx, gy, gz), g2y ∈ F (gy, gz, gx) and
g2z ∈ F (gz, gx, gy).
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Lemma 1.1. [33]. Let (X, d) be a metric space. Then, for each a ∈ X
and B ∈ K(X), there is b0 ∈ B such that D(a, B) = d(a, b0), where D(a,
B) = infb∈B d(a, b).

In this paper, we establish a tripled coincidence and common tripled fixed
point theorem for hybrid pair of mappings satisfying new contractive condition.
To find tripled coincidence points, we do not use the continuity of any map-
ping involved therein. Our result improve, extend and generalize the results of
Gnana-Bhaskar and Lakshmikantham [12] and Lakshmikantham and Ciric [27].
An example is also given to validate our result.

2. Main results

Let Φ denote the set of all functions ϕ : [0, +∞)→ [0, +∞) satisfying
(iϕ) ϕ is non-decreasing,
(iiϕ) ϕ(t) < t for all t > 0,
(iiiϕ) limr→t+ ϕ(r) < t for all t > 0,

and Ψ denote the set of all functions ψ : [0, +∞)→ [0, +∞) which satisfies
(iψ) ψ is continuous,
(iiψ) ψ(t) < t for all t > 0.

Note that, by (iψ) and (iiψ) we have that ψ(t) = 0 if and only if t = 0.

For simplicity, we define the following:

M(x, y, z, u, v, w)

= min



D(gx, F (x, y, z)), D(gu, F (u, v, w)),
D(gy, F (y, z, x)), D(gv, F (v, w, u)),
D(gz, F (z, x, y)), D(gw, F (w, u, v)),
D(gx, F (u, v, w)), D(gu, F (x, y, z)),
D(gy, F (v, w, u)), D(gv, F (y, z, x)),
D(gz, F (w, u, v)), D(gu, F (z, x, y))


and

m(x, y, z, u, v, w)

= min



D(x, F (x, y, z)), D(u, F (u, v, w)),
D(y, F (y, z, x)), D(v, F (v, w, u)),
D(z, F (z, x, y)), D(w, F (w, u, v)),
D(x, F (u, v, w)), D(u, F (x, y, z)),
D(y, F (v, w, u)), D(v, F (y, z, x)),
D(z, F (w, u, v)), D(u, F (z, x, y))


.

Theorem 2.1. Let (X, d) be a metric space, F : X × X × X → K(X) and
g : X → X be two mappings. Assume there exist some ϕ ∈ Φ and ψ ∈ Ψ such
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that

H(F (x, y, z), F (u, v, w)) (1)

≤ ϕ (max {d(gx, gu), d(gy, gv), d(gz, gw)}) + ψ (M(x, y, z, u, v, w)) ,

for all x, y, z, u, v, w ∈ X. Furthermore assume that F (X×X×X) ⊆ g(X) and
g(X) is a complete subset of X. Then F and g have a tripled coincidence point.
Moreover, F and g have a common tripled fixed point, if one of the following
conditions holds:

(a) F and g are w−compatible. limn→∞ gnx = u, limn→∞ gny = v and
limn→∞ gnz = w for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X and g
is continuous at u, v and w.

(b) g is F−weakly commuting for some (x, y, z) ∈ C(F, g) and gx, gy and
gz are fixed points of g, that is, g2x = gx, g2y = gy and g2z = gz.

(c) g is continuous at x, y and z. limn→∞ gnu = x, limn→∞ gnv = y and
limn→∞ gnw = z for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

Proof. Let x0, y0, z0 ∈ X be arbitrary. Then F (x0, y0, z0), F (y0, z0, x0) and
F (z0, x0, y0) are well defined. Choose gx1 ∈ F (x0, y0, z0), gy1 ∈ F (y0, z0, x0)
and gz1 ∈ F (z0, x0, y0), because F (X×X×X) ⊆ g(X). Since F : X×X×X →
K(X), therefore by Lemma 1.1, there exist u1 ∈ F (x1, y1, z1), u2 ∈ F (y1, z1,
x1) and u3 ∈ F (z1, x1, y1) such that

d(gx1, u1) ≤ H(F (x0, y0, z0), F (x1, y1, z1)),

d(gy1, u2) ≤ H(F (y0, z0, x0), F (y1, z1, x1)),

d(gz1, u3) ≤ H(F (z0, x0, y0), F (z1, x1, y1)).

Since F (X × X × X) ⊆ g(X), there exist x2, y2, z2 ∈ X such that u1 = gx2,
u2 = gy2 and u3 = gz2. Thus

d(gx1, gx2) ≤ H(F (x0, y0, z0), F (x1, y1, z1)),

d(gy1, gy2) ≤ H(F (y0, z0, x0), F (y1, z1, x1)),

d(gz1, gz2) ≤ H(F (z0, x0, y0), F (z1, x1, y1)).

Continuing this process, we obtain sequences {xn}, {yn} and {zn} in X such
that for all n ∈ N, we have gxn+1 ∈ F (xn, yn, zn), gyn+1 ∈ F (yn, zn, xn) and
gzn+1 ∈ F (zn, xn, yn) such that

d(gxn, gxn+1)

≤ H(F (xn−1, yn−1, zn−1), F (xn, yn, zn))

≤ ϕ (max {d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn)})
+ψ (M(xn−1, yn−1, zn−1, xn, yn, zn)) .

Thus, by (iψ) and (iiψ), we get

d(gxn, gxn+1) ≤ ϕ (max {d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn)}) .
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Similarly

d(gyn, gyn+1) ≤ ϕ (max {d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn)}) ,
d(gzn, gzn+1) ≤ ϕ (max {d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn)}) .

Combining them, we get

max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)} (2)

≤ ϕ (max {d(gxn−1, gxn), d(gyn−1, gyn), d(gzn−1, gzn)}) ,

which implies, by (iiϕ), that

max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)}
< max {d(gxn−1, gxn), d(gyn−1, gyn), d(gzn, gzn+1)} .

This shows that the sequence {δn}∞n=0 defined by

δn = max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)} ,

is a decreasing sequence of positive numbers. Then there exists δ ≥ 0 such that

lim
n→∞

δn = lim
n→∞

max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)} = δ. (3)

We shall prove that δ = 0. Suppose that δ > 0. Letting n→∞ in (2), by using
(3) and (iiiϕ), we get

δ ≤ lim
n→∞

ϕ(δn) = lim
δn→δ+

ϕ(δn) < δ,

which is a contradiction. Hence

lim
n→∞

δn = lim
n→∞

max {d(gxn, gxn+1), d(gyn, gyn+1), d(gzn, gzn+1)} = 0.

(4)
We now prove that {gxn}∞n=0, {gyn}∞n=0 and {gzn}∞n=0 are Cauchy sequences
in (X, d). Suppose, to the contrary, that one of the sequences is not a Cauchy
sequence. Then there exists an ε > 0 for which we can subsequences {gxn(k)},
{gxm(k)} of {gxn}∞n=0, {gyn(k)}, {gym(k)} of {gyn}∞n=0 and {gzn(k)}, {gzm(k)}
of {gzn}∞n=0 such that

max
{
d(gxn(k), gxm(k)), d(gyn(k), gym(k)), d(gzn(k), gzm(k))

}
≥ ε, k = 1, 2, ...

(5)
We can choose n(k) to be the smallest positive integer satisfying (5). So

max
{
d(gxn(k)−1, gxm(k)), d(gyn(k)−1, gym(k)), d(gzn(k)−1, gzm(k))

}
< ε. (6)

By (5), (6) and the triangle inequality, we have

ε ≤ rk = max
{
d(gxn(k), gxm(k)), d(gyn(k), gym(k)), d(gzn(k), gzm(k))

}
≤ max

{
d(gxn(k), gxn(k)−1), d(gyn(k), gyn(k)−1), d(gzn(k), gzn(k)−1)

}
+ max

{
d(gxn(k)−1, gxm(k)), d(gyn(k)−1, gym(k)), d(gzn(k)−1, gzm(k))

}
< max

{
d(gxn(k), gxn(k)−1), d(gyn(k), gyn(k)−1), d(gzn(k), gzn(k)−1)

}
+ ε.
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Letting k →∞ in the above inequality and using (4), we get

lim
k→∞

rk = lim
k→∞

max
{
d(gxn(k), gxm(k)), d(gyn(k), gym(k)), d(gzn(k), gzm(k))

}
= ε.

(7)
By the triangle inequality, we have

max
{
d(gxn(k), gxm(k)), d(gyn(k), gym(k)), d(gzn(k), gzm(k))

}
≤ max

{
d(gxn(k), gxn(k)+1), d(gyn(k), gyn(k)+1), d(gzn(k), gzn(k)+1)

}
+ max

{
d(gxn(k)+1, gxm(k)+1), d(gyn(k)+1, gym(k)+1), d(gzn(k)+1, gzm(k)+1)

}
+ max

{
d(gxm(k)+1, gxm(k)), d(gym(k)+1, gym(k)), d(gzm(k)+1, gzm(k))

}
≤ δn(k) + δm(k) + max

 d(gxn(k)+1, gxm(k)+1),
d(gyn(k)+1, gym(k)+1),
d(gzn(k)+1, gzm(k)+1)

 .

Thus

rk ≤ δn(k) + δm(k) + max

 d(gxn(k)+1, gxm(k)+1),
d(gyn(k)+1, gym(k)+1),
d(gzn(k)+1, gzm(k)+1)

 . (8)

Since gxn(k)+1 ∈ F (xn(k), yn(k), zn(k)), gxm(k)+1 ∈ F (xm(k), ym(k), zm(k)),
gyn(k)+1 ∈ F (yn(k), zn(k), xn(k)), gym(k)+1 ∈ F (ym(k), zm(k), xm(k)), gzn(k)+1 ∈
F (zn(k), xn(k), yn(k)), gzm(k)+1 ∈ F (zm(k), xm(k), ym(k)), therefore by (1), we
have

d(gxn(k)+1, gxm(k)+1)

≤ H(F (xn(k), yn(k), zn(k)), F (xm(k), ym(k), zm(k)))

≤ ϕ
(
max

{
d(gxn(k), gxm(k)), d(gyn(k), gym(k)), d(gzn(k), gzm(k))

})
+ψ

(
M(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))

)
≤ ϕ(rk) + ψ

(
M(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))

)
.

Thus

d(gxn(k)+1, gxm(k)+1)

≤ ϕ(rk) + ψ
(
M(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))

)
.

Similarly

d(gyn(k)+1, gym(k)+1)

≤ ϕ(rk) + ψ
(
M(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))

)
,

and

d(gzn(k)+1, gzm(k)+1)

≤ ϕ(rk) + ψ
(
M(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))

)
.
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Combining them, we get

max

 d(gxn(k)+1, gxm(k)+1),
d(gyn(k)+1, gym(k)+1),
d(gzn(k)+1, gzm(k)+1)

 (9)

≤ ϕ(rk) + ψ
(
M(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))

)
.

By (8) and (9), we get

rk ≤ δn(k) + δm(k) + ϕ(rk) + ψ
(
M(xn(k), yn(k), zn(k), xm(k), ym(k), zm(k))

)
.

Letting k →∞ in the above inequality, by using (4), (7), (iψ), (iiψ) and (iiiϕ),
we get

ε ≤ 0 + 0 + lim
k→∞

ϕ(rk) + 0 ≤ lim
rk→ε+

ϕ(rk) < ε,

which is a contradiction. This shows that {gxn}∞n=0, {gyn}∞n=0 and {gzn}∞n=0

are Cauchy sequences in g(X). Since g(X) is complete, therefore there exist x,
y, z ∈ X such that

lim
n→∞

gxn = gx, lim
n→∞

gyn = gy and lim
n→∞

gzn = gz. (10)

Now, since gxn+1 ∈ F (xn, yn, zn), gyn+1 ∈ F (yn, zn, xn) and gzn+1 ∈ F (zn,
xn, yn), therefore by using condition (1), we get

D(gxn+1, F (x, y, z))

≤ H(F (xn, yn, zn), F (x, y, z))

≤ ϕ (max {d(gxn, gx), d(gyn, gy), d(gzn, gz)})
+ψ (M {xn, yn, zn, x, y, z}) .

Letting n→∞ in the above inequality, by using (10), (iψ), (iiψ) and (iiiϕ), we
get

D(gx, F (x, y, z)) ≤ lim
t→0+

ϕ(t) + 0 = 0 + 0 = 0,

which implies that

D(gx, F (x, y, z)) = 0.

Similarly, we can get

D(gy, F (y, z, x)) = 0 and D(gz, F (z, x, y)) = 0.

It follows that

gx ∈ F (x, y, z), gy ∈ F (y, z, x) and gz ∈ F (z, x, y),

that is (x, y, z) is a tripled coincidence point of F and g.
Suppose now that (a) holds. Assume that for some (x, y, z) ∈ C(F, g),

lim
n→∞

gnx = u, lim
n→∞

gny = v and lim
n→∞

gnz = w, (11)

where u, v, w ∈ X. Since g is continuous at u, v and w, we have, by (11), that
u, v and w are fixed points of g, that is,

gu = u, gv = v and gw = w. (12)
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As F and g are w−compatible, so for all n ≥ 1

gnx ∈ F (gn−1x, gn−1y, gn−1z),

gny ∈ F (gn−1y, gn−1z, gn−1x), (13)

gnz ∈ F (gn−1z, gn−1x, gn−1y).

By using (1) and (13), we obtain

D(gnx, F (u, v, w))

≤ H(F (gn−1x, gn−1y, gn−1z), F (u, v, w))

≤ ϕ (max {d(gnx, gu), d(gny, gv), d(gnz, gw)})
+ψ

(
M(gn−1x, gn−1y, gn−1z, u, v, w)

)
.

On taking limit as n → ∞ in the above inequality, by using (11), (12), (iψ),
(iiψ) and (iiiϕ), we get

D(gu, F (u, v, w)) ≤ lim
t→0+

ϕ(t) + 0 = 0 + 0 = 0,

which implies that

D(gu, F (u, v, w)) = 0.

Similarly, we can get

D(gv, F (v, w, u)) = 0 and D(gw, F (w, u, v)) = 0.

It follows that

gu ∈ F (u, v, w), gv ∈ F (v, w, u) and gw ∈ F (w, u, v). (14)

By (12) and (14), we get

u = gu ∈ F (u, v, w), v = gv ∈ F (v, w, u) and w = gw ∈ F (w, u, v),

that is, (u, v, w) is a common tripled fixed point of F and g.
Suppose now that (b) holds. Assume that for some (x, y, z) ∈ C(F, g), g is

F−weakly commuting, that is, g2x ∈ F (gx, gy, gz), g2y ∈ F (gy, gz, gx) and
g2z ∈ F (gz, gx, gy) and g2x = gx, g2y = gy and g2z = gz. Thus gx = g2x ∈
F (gx, gy, gz), gy = g2y ∈ F (gy, gz, gx) and gz = g2z ∈ F (gz, gy, gx), that is,
(gx, gy, gz) is a common tripled fixed point of F and g.

Suppose now that (c) holds. Assume that for some (x, y, z) ∈ C(F, g) and
for some u, v, w ∈ X,

lim
n→∞

gnu = x, lim
n→∞

gnv = y and lim
n→∞

gnw = z.

Since g is continuous at x, y and z. Therefore x, y and z are fixed points of g,
that is,

gx = x, gy = y and gz = z.

Since (x, y, z) ∈ C(F, g), therefore, we obtain

x = gx ∈ F (x, y, z), y = gy ∈ F (y, z, x) and z = gz ∈ F (z, x, y),

that is, (x, y, z) is a common tripled fixed point of F and g.



TRIPLED FIXED POINT UNDER NEW CONTRACTIVE CONDITION 709

Finally, suppose that (d) holds. Let g(C(F, g)) = {(x, x, x)}. Then {x} =
{gx} = F (x, x, x). Hence (x, x, x) is tripled fixed point of F and g.

Example 1. Suppose that X = [0, 1], equipped with the metric d : X×X → [0,
+∞) defined by d(x, y) = max{x, y} and d(x, x) = 0 for all x, y ∈ X. Let
F : X ×X ×X → K(X) be defined as

F (x, y, z) =

{
{0}, for x, y, z = 1,[

0, x2+y2+z2

6

]
, for x, y, z ∈ [0, 1),

and g : X → X be defined as

g(x) = x2, for all x ∈ X.

Define ϕ : [0, +∞)→ [0, +∞) by

ϕ(t) =

{
t
2 , for t 6= 1,
3
4 , for t = 1,

and ψ : [0, +∞)→ [0, +∞) by

ψ(t) =
t

4
, for all t ≥ 0.

Now, for all x, y, z, u, v, w ∈ X with x, y, z, u, v, w ∈ [0, 1), we have
Case (a) If x2 + y2 + z2 = u2 + v2 + w2, then

H(F (x, y, z), F (u, v, w))

=
u2 + v2 + w2

6

≤ 1

6
max{x2, u2}+

1

6
max{y2, v2}+

1

6
max{z2, w2}

≤ 1

6
d(gx, gu) +

1

6
d(gy, gv) +

1

6
d(gz, gw)

≤ 1

2
(max {d(gx, gu), d(gy, gv), d(gz, gw)})

≤ ϕ (max {d(gx, gu), d(gy, gv), d(gz, gw)}) + ψ (M(x, y, z, u, v, w)) .
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Case (b) If x2 + y2 + z2 6= u2 + v2 + w2 with x2 + y2 + z2 < u2 + v2 + w2,
then

H(F (x, y, z), F (u, v, w))

=
u2 + v2 + w2

6

≤ 1

6
max{x2, u2}+

1

6
max{y2, v2}+

1

6
max{z2, w2}

≤ 1

6
d(gx, gu) +

1

6
d(gy, gv) +

1

6
d(gz, gw)

≤ 1

2
(max {d(gx, gu), d(gy, gv), d(gz, gw)})

≤ ϕ (max {d(gx, gu), d(gy, gv), d(gz, gw)}) + ψ (M(x, y, z, u, v, w)) .

Similarly, we obtain the same result for u2 + v2 + w2 < x2 + y2 + z2. Thus the
contractive condition (1) is satisfied for all x, y, z, u, v, w ∈ X with x, y, z, u,
v, w ∈ [0, 1). Again, for all x, y, z, u, v, w ∈ X with x, y, z ∈ [0, 1) and u, v,
w = 1, we have

H(F (x, y, z), F (u, v, w))

=
x2 + y2 + z2

6

≤ 1

6
max{x2, u2}+

1

6
max{y2, v2}+

1

6
max{z2, w2}

≤ 1

6
d(gx, gu) +

1

6
d(gy, gv) +

1

6
d(gz, gw)

≤ 1

2
(max {d(gx, gu), d(gy, gv), d(gz, gw)})

≤ ϕ (max {d(gx, gu), d(gy, gv), d(gz, gw)}) + ψ (M(x, y, z, u, v, w)) .

Thus the contractive condition (1) is satisfied for all x, y, z, u, v, w ∈ X with
x, y, z ∈ [0, 1) and u, v, w = 1. Similarly, we can see that the contractive
condition (1) is satisfied for all x, y, z, u, v, w ∈ X with x, y, z, u, v, w = 1.
Hence, the hybrid pair {F, g} satisfies the contractive condition (1), for all x, y,
z, u, v, w ∈ X. In addition, all the other conditions of Theorem 2.1 are satisfied
and z = (0, 0, 0) is a common tripled fixed point of hybrid pair {F, g}. The
function F : X ×X ×X → K(X) involved in this example is not a continuous
function on X ×X ×X.

Corollary 2.2. Let (X, d) be a metric space, F : X × X × X → K(X) and
g : X → X be two mappings. Assume there exist some ϕ ∈ Φ and ψ ∈ Ψ such
that

H(F (x, y, z), F (u, v, w))

≤ ϕ

(
d(gx, gu) + d(gy, gv) + d(gz, gw)

3

)
+ ψ (M(x, y, z, u, v, w)) ,
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for all x, y, z, u, v, w ∈ X. Furthermore assume that F (X×X×X) ⊆ g(X) and
g(X) is a complete subset of X. Then F and g have a tripled coincidence point.
Moreover, F and g have a common tripled fixed point, if one of the following
conditions holds:

(a) F and g are w−compatible. limn→∞ gnx = u, limn→∞ gny = v and
limn→∞ gnz = w for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X and g
is continuous at u, v and w.

(b) g is F−weakly commuting for some (x, y, z) ∈ C(F, g) and gx, gy and
gz are fixed points of g, that is, g2x = gx, g2y = gy and g2z = gz.

(c) g is continuous at x, y and z. limn→∞ gnu = x, limn→∞ gnv = y and
limn→∞ gnw = z for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

Proof. Since

d(gx, gu) + d(gy, gv) + d(gz, gw)

3
≤ max {d(gx, gu), d(gy, gv), d(gz, gw)} .

Then, we apply Theorem 2.1, since ϕ is non-decreasing.

If we put g = I (the identity mapping) in the Theorem 2.1, we get the
following result:

Corollary 2.3. Let (X, d) be a complete metric space, F : X×X×X → K(X)
be a mapping. Assume there exist some ϕ ∈ Φ and ψ ∈ Ψ such that

H(F (x, y, z), F (u, v, w))

≤ ϕ (max {d(x, u), d(y, v), d(z, w)}) + ψ (m(x, y, z, u, v, w)) ,

for all x, y, z, u, v, w ∈ X. Then F has a tripled fixed point.

If we put g = I (the identity mapping) in the Corollary 2.2, we get the
following result:

Corollary 2.4. Let (X, d) be a complete metric space, F : X×X×X → K(X)
be a mapping. Assume there exist some ϕ ∈ Φ and ψ ∈ Ψ such that

H(F (x, y, z), F (u, v, w))

≤ ϕ

(
d(x, u) + d(y, v) + d(z, w)

3

)
+ ψ (m(x, y, z, u, v, w)) ,

for all x, y, z, u, v, w ∈ X. Then F has a tripled fixed point.

If we put ψ(t) = 0 in Theorem 2.1, we get the following result:
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Corollary 2.5. Let (X, d) be a metric space, F : X × X × X → K(X) and
g : X → X be two mappings. Assume there exists some ϕ ∈ Φ such that

H(F (x, y, z), F (u, v, w)) ≤ ϕ (max {d(gx, gu), d(gy, gv), d(gz, gw)}) ,
for all x, y, z, u, v, w ∈ X. Furthermore assume that F (X×X×X) ⊆ g(X) and
g(X) is a complete subset of X. Then F and g have a tripled coincidence point.
Moreover, F and g have a common tripled fixed point, if one of the following
conditions holds:

(a) F and g are w−compatible. limn→∞ gnx = u, limn→∞ gny = v and
limn→∞ gnz = w for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X and g
is continuous at u, v and w.

(b) g is F−weakly commuting for some (x, y, z) ∈ C(F, g) and gx, gy and
gz are fixed points of g, that is, g2x = gx, g2y = gy and g2z = gz.

(c) g is continuous at x, y and z. limn→∞ gnu = x, limn→∞ gnv = y and
limn→∞ gnw = z for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

If we put ψ(t) = 0 in Corollary 2.2, we get the following result:

Corollary 2.6. Let (X, d) be a metric space, F : X × X × X → K(X) and
g : X → X be two mappings. Assume there exists some ϕ ∈ Φ such that

H(F (x, y, z), F (u, v, w)) ≤ ϕ
(
d(gx, gu), d(gy, gv) + d(gz, gw)

3

)
,

for all x, y, z, u, v, w ∈ X. Furthermore assume that F (X×X×X) ⊆ g(X) and
g(X) is a complete subset of X. Then F and g have a tripled coincidence point.
Moreover, F and g have a common tripled fixed point, if one of the following
conditions holds:

(a) F and g are w−compatible. limn→∞ gnx = u, limn→∞ gny = v and
limn→∞ gnz = w for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X and g
is continuous at u, v and w.

(b) g is F−weakly commuting for some (x, y, z) ∈ C(F, g) and gx, gy and
gz are fixed points of g, that is, g2x = gx, g2y = gy and g2z = gz.

(c) g is continuous at x, y and z. limn→∞ gnu = x, limn→∞ gnv = y and
limn→∞ gnw = z for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

If we put g = I (the identity mapping) in the Corollary 2.5, we get the
following result:

Corollary 2.7. Let (X, d) be a complete metric space, F : X×X×X → K(X)
be a mapping. Assume there exists some ϕ ∈ Φ such that

H(F (x, y, z), F (u, v, w)) ≤ ϕ (max {d(x, u), d(y, v), d(z, w)}) ,
for all x, y, z, u, v, w ∈ X. Then F has a tripled fixed point.
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If we put g = I (the identity mapping) in the Corollary 2.6, we get the
following result:

Corollary 2.8. Let (X, d) be a complete metric space, F : X×X×X → K(X)
be a mapping. Assume there exists some ϕ ∈ Φ such that

H(F (x, y, z), F (u, v, w)) ≤ ϕ
(
d(x, u) + d(y, v) + d(z, w)

3

)
,

for all x, y, z, u, v, w ∈ X. Then F has a tripled fixed point.

If we put ϕ(t) = kt where 0 < k < 1 in Corollary 2.5, we get the following
result:

Corollary 2.9. Let (X, d) be a metric space. Assume F : X×X×X → K(X)
and g : X → X be two mappings satisfying

H(F (x, y, z), F (u, v, w)) ≤ kmax {d(gx, gu), d(gy, gv), d(gz, gw)} ,

for all x, y, z, u, v, w ∈ X, where 0 < k < 1. Furthermore assume that
F (X×X×X) ⊆ g(X) and g(X) is a complete subset of X. Then F and g have
a tripled coincidence point. Moreover, F and g have a common tripled fixed
point, if one of the following conditions holds:

(a) F and g are w−compatible. limn→∞ gnx = u, limn→∞ gny = v and
limn→∞ gnz = w for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X and g
is continuous at u, v and w.

(b) g is F−weakly commuting for some (x, y, z) ∈ C(F, g) and gx, gy and
gz are fixed points of g, that is, g2x = gx, g2y = gy and g2z = gz.

(c) g is continuous at x, y and z. limn→∞ gnu = x, limn→∞ gnv = y and
limn→∞ gnw = z for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

If we put ϕ(t) = kt where 0 < k < 1 in Corollary 2.6, we get the following
result:

Corollary 2.10. Let (X, d) be a metric space. Assume F : X×X×X → K(X)
and g : X → X be two mappings satisfying

H(F (x, y, z), F (u, v, w)) ≤ k

3
(d(gx, gu) + d(gy, gv) + d(gz, gw)) ,

for all x, y, z, u, v, w ∈ X where 0 < k < 1. Furthermore assume that F (X ×
X×X) ⊆ g(X) and g(X) is a complete subset of X. Then F and g have a tripled
coincidence point. Moreover, F and g have a common tripled fixed point, if one
of the following conditions holds:

(a) F and g are w−compatible. limn→∞ gnx = u, limn→∞ gny = v and
limn→∞ gnz = w for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X and g
is continuous at u, v and w.
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(b) g is F−weakly commuting for some (x, y, z) ∈ C(F, g) and gx, gy and
gz are fixed points of g, that is, g2x = gx, g2y = gy and g2z = gz.

(c) g is continuous at x, y and z. limn→∞ gnu = x, limn→∞ gnv = y and
limn→∞ gnw = z for some (x, y, z) ∈ C(F, g) and for some u, v, w ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

If we put g = I (the identity mapping) in the Corollary 2.9, we get the
following result:

Corollary 2.11. Let (X, d) be a complete metric space, F : X×X×X → K(X)
be a mapping satisfying

H(F (x, y, z), F (u, v, w)) ≤ kmax {d(x, u), d(y, v), d(z, w)} ,

for all x, y, z, u, v, w ∈ X, where 0 < k < 1. Then F has a tripled fixed point.

If we put g = I (the identity mapping) in the Corollary 2.10, we get the
following result:

Corollary 2.12. Let (X, d) be a complete metric space, F : X×X×X → K(X)
be a mapping satisfying

H(F (x, y, z), F (u, v, w)) ≤ k

3
(d(x, u) + d(y, v) + d(z, w)) ,

for all x, y, z, u, v, w ∈ X, where 0 < k < 1. Then F has a tripled fixed point.
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