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GENERAL DECAY OF SOLUTIONS OF NONLINEAR

VISCOELASTIC WAVE EQUATION

Kiyeon Shin and Sujin Kang

Abstract. In a bounded domain, we consider

utt −∆u+

∫ t

0
g(t− τ)∆udτ + ut = |u|pu,

where p > 0 and g is a nonnegative and decaying function. We establish a
general decay result which is not necessarily of exponential or polynomial

type.

1. Introduction

In this paper, we consider the following problem ; utt −∆u+
∫ t

0
g(t− τ)∆u dτ + a(x)ut = |u|pu, x ∈ Ω, t ≥ 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1)

where p > 0 is a constant, g is positive function satisfying some conditions to be
satisfied later, a(x) = 1 and Ω is bounded domain of Rn (n ≥ 1) with a smooth
boundary ∂Ω.

The viscoelastic wave equation has been consider by many authors during
the past decades. Cavalcanti et al. [3] studied for a function a : Ω→ R+ which
may be a null in a part of the domain Ω. Under the conditions a(x) ≥ a0 > 0
on ω(⊂ Ω) which satisfies some geometry restrictions, the authors established
results on exponential rate of decay with conditions −ξ1g(t) ≤ g′(t) ≤ −ξ2g(t),
t ≥ 0. Berrimi and Messaoudi [1] introduced a different functional which allows
a weak condition than that of Cavalcanti et al. [3]. For other related works, we
refer the readers [5], [6] and [8].

In the case of a(x) = 0, Berrimi and Messaoudi [2] showed, under the con-
dition of g′(t) ≤ −ξg(t) (ξ > 0), that the solution is global and decays in a
polynomial or an exponential function when the initial data is small enough.

Received May 27, 2016; Accepted August 27, 2016.

2010 Mathematics Subject Classification. 35L05, 35L15, 35L70, 35B25.
Key words and phrases. General decay, Relaxation, Viscoelastic.

This work was supported by a 2-Year Research Grant of Pusan National University.

c©2016 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)

651



652 K. SHIN AND S. KANG

Then Messaoudi [7] improved these results by establishing a general decay of
energy which is similar to the relaxation function.

We show, in case of a(x) = 1, that the solution energy decays at a similar rate
of decay of relaxation function, which is not necessarily decaying in a polynomial
or exponential fashion.

This paper is organized as follows ; In Section 2, we present some nota-
tions and materials to be needed for our works. And, Section 3 contains the
statements and proofs of our main results.

2. Preliminaries

In this section, we present some necessary materials in the proof of our main
results. Also, for the sake of completeness we state, without a proof, the global
existence result of Cavalcanti and Oquendo [4]. For the relaxation function g,
we assume the followings ;

(H1) g : R+ → R+ is nonincreasing C1–function satisfying
g(0) > 0, and 1−

∫∞
0
g(s) ds = l > 0.

(H2) There exists a positive differentiable function ξ(t) satisfying
i) g′(t) ≤ −ξ(t)g(t) for t ≥ 0,
ii) |ξ′(t)/ξ(t)| ≤ k, ξ(t) > 0, and ξ′(t) ≤ 0 for t > 0.

(H3) For the nonlinear term, we assume
p > 0, for n = 1, 2 and 0 < p ≤ 2

n−2 , for n ≥ 3.

Remark 1. Since ξ is nonincreasing, ξ(t) ≤ ξ(0) := M

We will use the embeddings H1
0 ↪→ Lp for p ≤ 2n

n−2 (n ≥ 3), p ≥ 2 (n = 1, 2)

and Lq ↪→ Lp (p < q) with the same embedding constant C.

We introduce the modified energy functional

E(t) =
1

2

(
1−

∫ t

0

g(s)ds

)
‖∇u(t)‖22 +

1

2
(g ∗∇u)(t)− 1

p+ 2
‖u(t)‖p+2

p+2 +
1

2
‖ut‖22

where (g ∗ u)(t) =
∫ t

0
g(t− τ)||u(t)− u(τ)||22dτ .

Lemma 2.1. We suppose that (H1) and (H2) hold and that u0 ∈ H1
0 (Ω),

u1 ∈ L2(Ω). If u is the solution of (1), then the energy functional E satisfies

E′(t) =
1

2
(g′ ∗ ∇u)(t)− 1

2
g(t)||∇u(t)||22 − ||ut||22 ≤

1

2
(g′ ∗ ∇u)(t) ≤ 0,

for almost all t ∈ [0, T ].

Proof. Multiplying (1) by ut and integrating over Ω, we obtain

d

dt

{
1

2

∫
Ω

|ut|2dx+
1

2

∫
Ω

|∇u|2dx− 1

p+ 2

∫
Ω

|u(t)|p+2dx

}
−
∫ t

0

g(t− τ)

∫
Ω

∇u(τ)∇ut(t)dxdτ = −
∫

Ω

|ut|2dx (2)
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For the last term on the left side of (2), we obtain∫ t

0

g(t− τ)

∫
Ω

∇u(τ)∇ut(t)dxdτ

= −1

2

d

dt

[∫ t

0

g(t− τ)

∫
Ω

|∇u(τ)−∇u(t)|2dxdτ
]

+
1

2

d

dt

[∫ t

0

g(τ)

∫
Ω

|∇u(t)|2dxdτ
]

+
1

2

∫ t

0

g′(t− τ)

∫
Ω

|∇u(τ)−∇u(t)|2dxdτ

−1

2
g(t)

∫
Ω

|∇u(t)|2dxdτ (3)

Inserting (3) into (2), we obtain

E′(t) =
1

2
(g′ ∗ ∇u)(t)− 1

2
g(t)‖∇u(t)‖22 − ‖ut‖22 ≤

1

2
(g′ ∗ ∇u)(t) ≤ 0.

�

We set J(t) = (1−
∫ t

0
g(s)ds)‖∇u(t)‖22 + (g ∗ ∇u)(t)− ‖u(t)‖p+2

p+2.

Lemma 2.2. Suppose (H1), (H3), u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω) hold such that

β = Cp+2

l ( 2(p+2)
pl E(0))

p
2 < 1 and J(0) > 0. Then J(t) > 0, ∀t > 0.

Proof. See [7]. �

Proposition 2.3. Suppose that the conditions of Lemma 2.2 are satisfied. Then
the solution of (1) is global and bounded.

Proof. See [2]. �

3. Decay of solution

In this section, we state and prove main result. For this purpose, we set
L(t) = E(t) + ε1I(t) + ε2K(t), where ε1 and ε2 are positive constants and

I(t) = ξ(t)
∫

Ω
uutdx, K(t) = −ξ(t)

∫
Ω
ut
∫ t

0
g(t− τ)(u(t)− u(τ))dτdx.

Lemma 3.1. For u ∈ H1
0 (Ω),∫

Ω

(∫ t

0

g(t− τ)(u(t)− u(τ))dτ

)2

dx ≤ (1− l)C2
p(g ∗ ∇u)(t).

Proof. By applying the Cauchy-Schwartz inequality and Poincaré’s constant
Cp, we obtain Lemma 3.1. �

Lemma 3.2. Suppose u is the solution of (1). Then we have 1
2E(t) ≤ L(t) ≤

2E(t).

Proof. By Lemma 3.1, (H1), we obtain Lemma 3.2. by using ξ(t) ≤M . ([7]) �
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Lemma 3.3. Suppose that (H1)–(H3) hold and that u0 ∈ H1
0 (Ω) and u1 ∈

L2(Ω). If u is the solution of (1), then I(t) satisfies

I ′(t) ≤ ξ(t)

[
1 +

4C2
p(k2 + 1)

l(3− l)

]∫
Ω

(ut)
2dx+

(3− l)(1− l)
2l

ξ(t)(g ∗ ∇u)(t)

− (3− l)l
16

ξ(t)

∫
Ω

|∇u|2dx+ ξ(t)

∫
Ω

|u|p+2dx. (4)

Proof. By using (1), (H1), (H2) and Young’s inequality,

I ′(t) = ξ(t)

∫
Ω

u2
tdx+ ξ′(t)

∫
Ω

uutdx− ξ(t)
∫

Ω

|∇u|2dx+ ξ(t)

∫
Ω

|u|p+2dx

−ξ(t)
∫

Ω

u

∫ t

0

g(t− τ)∆u(x, t)dτdx− ξ
∫

Ω

uutdx

≤ ξ(t)

[
1 +

1

4α1

∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣+
1

4α2

] ∫
Ω

|ut|2dx+
1

2
(1 +

1

η
)(1− l)ξ(t)(g ∗ ∇u)(t)

−1

2

[
1− (1 + η)(1− l)2 − 2

∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣α1C
2
p − α2C

2
p

]
ξ

∫
Ω

|∇u|2dx

+ξ(t)

∫
Ω

|u|p+2dx

≤ ξ(t)

[
1 +

k

4α1
+

1

4α2

] ∫
Ω

|ut|2dx+
1

2
(1 +

1

η
)(1− l)ξ(t)(g ∗ ∇u)(t)

−1

2

[
1− (1 + η)(1− l)2 − (2kα1 + α2)C2

p

]
ξ

∫
Ω

|∇u|2dx

+ξ(t)

∫
Ω

|u|p+2dx. (5)

By choosing η =
l

2(1− l)
, α1 =

l(3− l)
16C2

pk
, α2 =

l(3− l)
4C2

p

and (5),

(since 0 < l < 1, η, α1, α2 > 0)

I ′(t) ≤ ξ(t)

[
1 +

4C2
p(k2 + 1)

l(3− l)

]∫
Ω

(ut)
2dx+

(3− l)(1− l)
2l

ξ(t)(g ∗ ∇u)(t)

− (3− l)l
16

ξ(t)

∫
Ω

|∇u|2dx+ ξ(t)

∫
Ω

|u|p+2dx.

�
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Lemma 3.4. Suppose that (H1)–(H3) hold and that u0 ∈ H1
0 (Ω) and u1 ∈

L2(Ω). If u is the solution of (1), then K(t) satisfies

K ′(t) ≤ δξ(t)

[
1− 2(1− l)2 + C2p+2(

2(p+ 2)E(0)

pl
)p
] ∫

Ω

|∇ut|2dx

+Cδξ(t)(g ∗ ∇u)(t)− g(0)

4δ
C2
pξ(t)(g

′ ∗ ∇u)(t)

+

[
δ(k + 2)−

∫ t

0

g(s)ds

]
ξ(t)

∫
Ω

|ut|2dx

for all δ > 0, where Cδ is a constant depending on δ.

Proof. By (1),

K ′(t) = ξ(t)

[
K1(t)−K2(t) +K3(t)−K4(t) +K5(t)−

∫ t

0

g(s)ds

∫
Ω

u2
tdx

]
+ξ′(t)K6(t) (6)

where

K1(t) =

∫
Ω

∇u(t)

(∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτ

)
dx,

K2(t) =

∫
Ω

(∫ t

0

g(t− τ)∇u(τ)dτ

∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτ

)
dx,

K3(t) =

∫
Ω

ut

(∫ t

0

g(t− τ)(u(t)− u(τ))dτ

)
dx,

K4(t) =

∫
Ω

|u|pu
(∫ t

0

g(t− τ)(u(t)− u(τ)dτ)

)
dx,

K5(t) =

∫
Ω

−ut
(∫ t

0

g′(t− τ)(u(t)− u(τ))dτ

)
dx,

K6(t) =

∫
Ω

ut

(∫ t

0

g(t− τ)(u(t)− u(τ))dτ

)
dx.

For K1(t) – K3(t),

K1(t) ≤ δ
∫

Ω

|∇u(t)|2dx+
1− l
4δ

(g ∗ ∇u)(t), (7)
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K2(t) ≤ δ

∫
Ω

∣∣∣∣∫ t

0

g(t− τ)∇u(τ) dτ

∣∣∣∣2 dx
+

1

4δ

∫
Ω

∣∣∣∣∫ t

0

g(t− τ)(∇u(t)−∇u(τ)) dτ

∣∣∣∣2 dx
≤ δ

∫
Ω

(∫ t

0

[g(t− τ)(|∇u(t)−∇u(τ)|+ |∇u(t)|] dτ
)2

dx

+
1

4δ

∫
Ω

∣∣∣∣∫ t

0

g(t− τ)(∇u(t)−∇u(τ)) dτ

∣∣∣∣2 dx
≤ (2δ +

1

4δ
)(1− l)(g ∗ ∇u)(t) + 2δ(1− l)2

∫
Ω

|∇u|2dx, (8)

K3(t) ≤ δ

∫
Ω

|ut|2dx+
1− l
4δ

(g ∗ ∇u)(t). (9)

And, by Lemma 2.2,

K4(t) ≤
∫

Ω

[
δ|u|2p+2 +

1

4δ

(∫ t

0

g(t− τ)(u(t)− u(τ)) dτ

)2
]
dx (10)

≤ δC2p+2

(
2(p+ 2)

pl
E(0)

)p ∫
Ω

|∇u(t)|2dx+
(1− l)C2

p

4δ
(g ∗ ∇u)(t).

Also, for K5(t) – K6(t), by using Lemma 3.1 and the Young’s inequality,

K5(t) ≤ δ

∫
Ω

|ut|2dx−
g(0)C2

p

4δ
(g′ ∗ ∇u)(t), (11)

K6(t) ≤ δ

∫
Ω

|ut|2dx+
C2
p

4δ
(g ∗ ∇u)(t). (12)

When we put equations (7)–(12) into equation (6), we have the desired result.
�

Theorem 3.5. Suppose that (H1)–(H3) hold and that u0 ∈ H1
0 (Ω) and u1 ∈

L2(Ω). If u is the solution of (1), then for each t0 > 0 there exist positive

constants K and λ such that the solution of (1) satisfies E(t) ≤ Ke−λ
∫ t
t0
ξ(s)ds

,
for t ≥ t0.

Proof. Since g is positive, continuous and g(0) > 0,∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds =: g0 > 0, t ≥ t0. (13)
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By the definition of L(t), Lemma 2.2, Lemma 3.3–3.4 and (10),

L′(t) ≤ −

[
ε2

{
g0 − δ(k + 2)

}
− ε1

{
1 +

4C2
p(k2 + 1)

l(3− l)
}]

ξ(t)

∫
Ω

|ut|2dx

−
[
ε1l(3− l)

16
− ε2δ

{
1 + 2(1− l)2 + C2p+2

(2(p+ 2)E(0)

pl

)p}]
ξ(t)‖∇u‖22

−
{1

2
− ε2

g(0)

4δ
C2
pM −

(3− l)(1− l)
2l

ε1 − ε2Kδ

}
ξ(t)(g ∗ ∇u)(t)

+ε1ξ(t)

∫
Ω

|u|p+2dx. (14)

We choose δ sufficiently small so that g0 − δ(k + 2) > 1
2g0 and

16δ

l(3− l)

[
1 + 2(1− l)2 + C2p+2

(
2(p+ 2)E(0)

pl

)p]
<

g0

4
(

1 +
4C2

p(k2+1)

l(3−l)

) .
Hence, for a fixed δ, we may choose two positive constants ε1 and ε2 satisfying

g0

4
(

1 +
4C2

p(k2+1)

l(3−l)

)ε2 < ε1 <
g0

2
(

1 +
4C2

p(k2+1)

l(3−l)

)ε2,

1

2
−
ε2g(0)C2

pM

4δ
>

(3− l)(1− l)
2l

ε1 + ε2Kδ.

Then we will make

k1 = ε2{g0 − δ(k + 2)} − ε1

[
1 +

4C2
p(k2 + 1)

l(3− l)

]
> 0,

k2 =
ε1l(3− l)

16
− ε2δ

[
1 + 2(1− l)2 + C2p+2

(
2(p+ 2)E(0)

pl

)p]
> 0,

k3 =
1

2
− ε2

g(0)

4δ
C2
pM −

(3− l)(1− l)
2l

ε1 − ε2Kδ > 0.

Thus, by (14) and Lemma 3.2,

L′(t) ≤ −k1ξ(t)

∫
Ω

u2
t dx− k2ξ(t)‖∇u(t)‖22 − k3ξ(t)(g ∗ ∇u)(t) + ε1ξ(t)

∫
Ω

|u|p+2 dx

≤ −β1ξ(t)

[
1

2
(1−

∫ t

0

g(s) ds)‖∇u(t)‖22 +
1

2
(g ∗ ∇u)(t)

− 1

p+ 2

∫
Ω

|u|p+2 dx+
1

2
‖ut‖22

]
≤ −β1ξ(t)E(t) ≤ −β1

2
ξ(t)L(t), (15)

for ∀ t ≥ t0 and β1 > 0. Integrating (15), we have

L(t) ≤ L(t0)e
− β12

∫ t
t0
ξ(s) ds

.
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Then, by Lemma 3.2,

E(t) ≤ 2L(t0)e
− β12

∫ t
t0
ξ(s) ds

=: Ke
−λ

∫ t
t0
ξ(s)ds

,

for t ≥ t0. This completes the proof. �
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