East Asian Math. J.
Vol. 32 (2016), No. 5, pp. 651-658
http://dx.doi.org/10.7858/eamj.2016.045

GENERAL DECAY OF SOLUTIONS OF NONLINEAR VISCOELASTIC WAVE EQUATION

Kiyeon Shin and Sujin Kang

Abstract. In a bounded domain, we consider

$$
u_{t t}-\Delta u+\int_{0}^{t} g(t-\tau) \Delta u d \tau+u_{t}=|u|^{p} u
$$

where $p>0$ and g is a nonnegative and decaying function. We establish a general decay result which is not necessarily of exponential or polynomial type.

1. Introduction

In this paper, we consider the following problem ;

$$
\left(\begin{array}{ll}
u_{t t}-\Delta u+\int_{0}^{t} g(t-\tau) \Delta u d \tau+a(x) u_{t}=|u|^{p} u, & x \in \Omega, t \geq 0 \tag{1}\\
u(x, t)=0, & x \in \partial \Omega, t \geq 0 \\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), & x \in \Omega
\end{array}\right.
$$

where $p>0$ is a constant, g is positive function satisfying some conditions to be satisfied later, $a(x)=1$ and Ω is bounded domain of $\mathbb{R}^{n}(n \geq 1)$ with a smooth boundary $\partial \Omega$.

The viscoelastic wave equation has been consider by many authors during the past decades. Cavalcanti et al. [3] studied for a function $a: \Omega \rightarrow \mathbb{R}^{+}$which may be a null in a part of the domain Ω. Under the conditions $a(x) \geq a_{0}>0$ on $\omega(\subset \Omega)$ which satisfies some geometry restrictions, the authors established results on exponential rate of decay with conditions $-\xi_{1} g(t) \leq g^{\prime}(t) \leq-\xi_{2} g(t)$, $t \geq 0$. Berrimi and Messaoudi [1] introduced a different functional which allows a weak condition than that of Cavalcanti et al. [3]. For other related works, we refer the readers [5], [6] and [8].

In the case of $a(x)=0$, Berrimi and Messaoudi [2] showed, under the condition of $g^{\prime}(t) \leq-\xi g(t)(\xi>0)$, that the solution is global and decays in a polynomial or an exponential function when the initial data is small enough.

[^0]Then Messaoudi [7] improved these results by establishing a general decay of energy which is similar to the relaxation function.

We show, in case of $a(x)=1$, that the solution energy decays at a similar rate of decay of relaxation function, which is not necessarily decaying in a polynomial or exponential fashion.

This paper is organized as follows ; In Section 2, we present some notations and materials to be needed for our works. And, Section 3 contains the statements and proofs of our main results.

2. Preliminaries

In this section, we present some necessary materials in the proof of our main results. Also, for the sake of completeness we state, without a proof, the global existence result of Cavalcanti and Oquendo [4]. For the relaxation function g, we assume the followings ;
(H1) $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is nonincreasing C^{1}-function satisfying

$$
g(0)>0, \quad \text { and } \quad 1-\int_{0}^{\infty} g(s) d s=l>0
$$

(H2) There exists a positive differentiable function $\xi(t)$ satisfying
i) $g^{\prime}(t) \leq-\xi(t) g(t)$ for $t \geq 0$,
ii) $\left|\xi^{\prime}(t) / \xi(t)\right| \leq k, \xi(t)>0$, and $\xi^{\prime}(t) \leq 0$ for $t>0$.
(H3) For the nonlinear term, we assume

$$
p>0, \text { for } n=1,2 \text { and } 0<p \leq \frac{2}{n-2}, \text { for } n \geq 3
$$

Remark 1. Since ξ is nonincreasing, $\xi(t) \leq \xi(0):=M$
We will use the embeddings $H_{0}^{1} \hookrightarrow L^{p}$ for $p \leq \frac{2 n}{n-2}(n \geq 3), p \geq 2(n=1,2)$ and $L^{q} \hookrightarrow L^{p}(p<q)$ with the same embedding constant C.

We introduce the modified energy functional
$E(t)=\frac{1}{2}\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2}+\frac{1}{2}(g * \nabla u)(t)-\frac{1}{p+2}\|u(t)\|_{p+2}^{p+2}+\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}$ where $(g * u)(t)=\int_{0}^{t} g(t-\tau)\|u(t)-u(\tau)\|_{2}^{2} d \tau$.
Lemma 2.1. We suppose that (H1) and (H2) hold and that $u_{0} \in H_{0}^{1}(\Omega)$, $u_{1} \in L^{2}(\Omega)$. If u is the solution of (1), then the energy functional E satisfies

$$
E^{\prime}(t)=\frac{1}{2}\left(g^{\prime} * \nabla u\right)(t)-\frac{1}{2} g(t)\|\nabla u(t)\|_{2}^{2}-\left\|u_{t}\right\|_{2}^{2} \leq \frac{1}{2}\left(g^{\prime} * \nabla u\right)(t) \leq 0,
$$

for almost all $t \in[0, T]$.
Proof. Multiplying (1) by u_{t} and integrating over Ω, we obtain

$$
\begin{align*}
\frac{d}{d t}\{ & \left.\frac{1}{2} \int_{\Omega}\left|u_{t}\right|^{2} d x+\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{1}{p+2} \int_{\Omega}|u(t)|^{p+2} d x\right\} \\
& -\int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u(\tau) \nabla u_{t}(t) d x d \tau=-\int_{\Omega}\left|u_{t}\right|^{2} d x \tag{2}
\end{align*}
$$

For the last term on the left side of (2), we obtain

$$
\begin{align*}
& \int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u(\tau) \nabla u_{t}(t) d x d \tau \\
& =-\frac{1}{2} \frac{d}{d t}\left[\int_{0}^{t} g(t-\tau) \int_{\Omega}|\nabla u(\tau)-\nabla u(t)|^{2} d x d \tau\right] \\
& \quad+\frac{1}{2} \frac{d}{d t}\left[\int_{0}^{t} g(\tau) \int_{\Omega}|\nabla u(t)|^{2} d x d \tau\right] \\
& \quad+\frac{1}{2} \int_{0}^{t} g^{\prime}(t-\tau) \int_{\Omega}|\nabla u(\tau)-\nabla u(t)|^{2} d x d \tau \\
& \quad-\frac{1}{2} g(t) \int_{\Omega}|\nabla u(t)|^{2} d x d \tau \tag{3}
\end{align*}
$$

Inserting (3) into (2), we obtain

$$
E^{\prime}(t)=\frac{1}{2}\left(g^{\prime} * \nabla u\right)(t)-\frac{1}{2} g(t)\|\nabla u(t)\|_{2}^{2}-\left\|u_{t}\right\|_{2}^{2} \leq \frac{1}{2}\left(g^{\prime} * \nabla u\right)(t) \leq 0 .
$$

We set $J(t)=\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2}+(g * \nabla u)(t)-\|u(t)\|_{p+2}^{p+2}$.
Lemma 2.2. Suppose (H1), (H3), $u_{0} \in H_{0}^{1}(\Omega)$ and $u_{1} \in L^{2}(\Omega)$ hold such that $\beta=\frac{C^{p+2}}{l}\left(\frac{2(p+2)}{p l} E(0)\right)^{\frac{p}{2}}<1$ and $J(0)>0$. Then $J(t)>0, \forall t>0$.

Proof. See [7].
Proposition 2.3. Suppose that the conditions of Lemma 2.2 are satisfied. Then the solution of (1) is global and bounded.

Proof. See [2].

3. Decay of solution

In this section, we state and prove main result. For this purpose, we set $L(t)=E(t)+\varepsilon_{1} I(t)+\varepsilon_{2} K(t)$, where ε_{1} and ε_{2} are positive constants and $I(t)=\xi(t) \int_{\Omega} u u_{t} d x, K(t)=-\xi(t) \int_{\Omega} u_{t} \int_{0}^{t} g(t-\tau)(u(t)-u(\tau)) d \tau d x$.

Lemma 3.1. For $u \in H_{0}^{1}(\Omega)$,

$$
\int_{\Omega}\left(\int_{0}^{t} g(t-\tau)(u(t)-u(\tau)) d \tau\right)^{2} d x \leq(1-l) C_{p}^{2}(g * \nabla u)(t) .
$$

Proof. By applying the Cauchy-Schwartz inequality and Poincaré's constant C_{p}, we obtain Lemma 3.1.
Lemma 3.2. Suppose u is the solution of (1). Then we have $\frac{1}{2} E(t) \leq L(t) \leq$ $2 E(t)$.

Proof. By Lemma 3.1, (H1), we obtain Lemma 3.2. by using $\xi(t) \leq M$. ([7])

Lemma 3.3. Suppose that (H1)-(H3) hold and that $u_{0} \in H_{0}^{1}(\Omega)$ and $u_{1} \in$ $L^{2}(\Omega)$. If u is the solution of (1), then $I(t)$ satisfies

$$
\begin{align*}
I^{\prime}(t) \leq \xi(t) & {\left[1+\frac{4 C_{p}^{2}\left(k^{2}+1\right)}{l(3-l)}\right] \int_{\Omega}\left(u_{t}\right)^{2} d x+\frac{(3-l)(1-l)}{2 l} \xi(t)(g * \nabla u)(t) } \\
& -\frac{(3-l) l}{16} \xi(t) \int_{\Omega}|\nabla u|^{2} d x+\xi(t) \int_{\Omega}|u|^{p+2} d x \tag{4}
\end{align*}
$$

Proof. By using (1), (H1), (H2) and Young's inequality,

$$
\begin{align*}
& I^{\prime}(t)= \xi(t) \int_{\Omega} u_{t}^{2} d x+\xi^{\prime}(t) \int_{\Omega} u u_{t} d x-\xi(t) \int_{\Omega}|\nabla u|^{2} d x+\xi(t) \int_{\Omega}|u|^{p+2} d x \\
&-\xi(t) \int_{\Omega} u \int_{0}^{t} g(t-\tau) \Delta u(x, t) d \tau d x-\xi \int_{\Omega} u u_{t} d x \\
& \leq \quad \xi(t)\left[1+\frac{1}{4 \alpha_{1}}\left|\frac{\xi^{\prime}(t)}{\xi(t)}\right|+\frac{1}{4 \alpha_{2}}\right] \int_{\Omega}\left|u_{t}\right|^{2} d x+\frac{1}{2}\left(1+\frac{1}{\eta}\right)(1-l) \xi(t)(g * \nabla u)(t) \\
&-\frac{1}{2}\left[1-(1+\eta)(1-l)^{2}-2\left|\frac{\xi^{\prime}(t)}{\xi(t)}\right| \alpha_{1} C_{p}^{2}-\alpha_{2} C_{p}^{2}\right] \xi \int_{\Omega}|\nabla u|^{2} d x \\
&+\xi(t) \int_{\Omega}|u|^{p+2} d x \\
& \leq \quad \xi(t)\left[1+\frac{k}{4 \alpha_{1}}+\frac{1}{4 \alpha_{2}}\right] \int_{\Omega}\left|u_{t}\right|^{2} d x+\frac{1}{2}\left(1+\frac{1}{\eta}\right)(1-l) \xi(t)(g * \nabla u)(t) \\
&-\frac{1}{2}\left[1-(1+\eta)(1-l)^{2}-\left(2 k \alpha_{1}+\alpha_{2}\right) C_{p}^{2}\right] \xi \int_{\Omega}|\nabla u|^{2} d x \\
&+\xi(t) \int_{\Omega}|u|^{p+2} d x . \tag{5}
\end{align*}
$$

By choosing $\eta=\frac{l}{2(1-l)}, \alpha_{1}=\frac{l(3-l)}{16 C_{p}^{2} k}, \alpha_{2}=\frac{l(3-l)}{4 C_{p}^{2}}$ and (5),
(since $0<l<1, \eta, \alpha_{1}, \alpha_{2}>0$)

$$
\begin{aligned}
I^{\prime}(t) \leq \xi(t) & {\left[1+\frac{4 C_{p}^{2}\left(k^{2}+1\right)}{l(3-l)}\right] \int_{\Omega}\left(u_{t}\right)^{2} d x+\frac{(3-l)(1-l)}{2 l} \xi(t)(g * \nabla u)(t) } \\
& -\frac{(3-l) l}{16} \xi(t) \int_{\Omega}|\nabla u|^{2} d x+\xi(t) \int_{\Omega}|u|^{p+2} d x .
\end{aligned}
$$

Lemma 3.4. Suppose that (H1)-(H3) hold and that $u_{0} \in H_{0}^{1}(\Omega)$ and $u_{1} \in$ $L^{2}(\Omega)$. If u is the solution of (1), then $K(t)$ satisfies

$$
\begin{aligned}
K^{\prime}(t) \leq & \delta \xi(t)\left[1-2(1-l)^{2}+C^{2 p+2}\left(\frac{2(p+2) E(0)}{p l}\right)^{p}\right] \int_{\Omega}\left|\nabla u_{t}\right|^{2} d x \\
& +C_{\delta} \xi(t)(g * \nabla u)(t)-\frac{g(0)}{4 \delta} C_{p}^{2} \xi(t)\left(g^{\prime} * \nabla u\right)(t) \\
& +\left[\delta(k+2)-\int_{0}^{t} g(s) d s\right] \xi(t) \int_{\Omega}\left|u_{t}\right|^{2} d x
\end{aligned}
$$

for all $\delta>0$, where C_{δ} is a constant depending on δ.
Proof. By (1),

$$
\begin{align*}
K^{\prime}(t)= & \xi(t)\left[K_{1}(t)-K_{2}(t)+K_{3}(t)-K_{4}(t)+K_{5}(t)-\int_{0}^{t} g(s) d s \int_{\Omega} u_{t}^{2} d x\right] \\
& +\xi^{\prime}(t) K_{6}(t) \tag{6}
\end{align*}
$$

where

$$
\begin{aligned}
K_{1}(t) & =\int_{\Omega} \nabla u(t)\left(\int_{0}^{t} g(t-\tau)(\nabla u(t)-\nabla u(\tau)) d \tau\right) d x \\
K_{2}(t) & =\int_{\Omega}\left(\int_{0}^{t} g(t-\tau) \nabla u(\tau) d \tau \int_{0}^{t} g(t-\tau)(\nabla u(t)-\nabla u(\tau)) d \tau\right) d x \\
K_{3}(t) & =\int_{\Omega} u_{t}\left(\int_{0}^{t} g(t-\tau)(u(t)-u(\tau)) d \tau\right) d x, \\
K_{4}(t) & =\int_{\Omega}|u|^{p} u\left(\int_{0}^{t} g(t-\tau)(u(t)-u(\tau) d \tau)\right) d x, \\
K_{5}(t) & =\int_{\Omega}-u_{t}\left(\int_{0}^{t} g^{\prime}(t-\tau)(u(t)-u(\tau)) d \tau\right) d x, \\
K_{6}(t) & =\int_{\Omega} u_{t}\left(\int_{0}^{t} g(t-\tau)(u(t)-u(\tau)) d \tau\right) d x .
\end{aligned}
$$

For $K_{1}(t)-K_{3}(t)$,

$$
\begin{equation*}
K_{1}(t) \leq \delta \int_{\Omega}|\nabla u(t)|^{2} d x+\frac{1-l}{4 \delta}(g * \nabla u)(t) \tag{7}
\end{equation*}
$$

$$
\begin{align*}
K_{2}(t) \leq & \delta \int_{\Omega}\left|\int_{0}^{t} g(t-\tau) \nabla u(\tau) d \tau\right|^{2} d x \\
& +\frac{1}{4 \delta} \int_{\Omega}\left|\int_{0}^{t} g(t-\tau)(\nabla u(t)-\nabla u(\tau)) d \tau\right|^{2} d x \\
\leq & \delta \int_{\Omega}\left(\int_{0}^{t}[g(t-\tau)(|\nabla u(t)-\nabla u(\tau)|+|\nabla u(t)|] d \tau)^{2} d x\right. \\
& +\frac{1}{4 \delta} \int_{\Omega}\left|\int_{0}^{t} g(t-\tau)(\nabla u(t)-\nabla u(\tau)) d \tau\right|^{2} d x \\
\leq & \left(2 \delta+\frac{1}{4 \delta}\right)(1-l)(g * \nabla u)(t)+2 \delta(1-l)^{2} \int_{\Omega}|\nabla u|^{2} d x \tag{8}\\
K_{3}(t) \leq & \delta \int_{\Omega}\left|u_{t}\right|^{2} d x+\frac{1-l}{4 \delta}(g * \nabla u)(t) . \tag{9}
\end{align*}
$$

And, by Lemma 2.2,

$$
\begin{align*}
K_{4}(t) & \leq \int_{\Omega}\left[\delta|u|^{2 p+2}+\frac{1}{4 \delta}\left(\int_{0}^{t} g(t-\tau)(u(t)-u(\tau)) d \tau\right)^{2}\right] d x \tag{10}\\
& \leq \delta C^{2 p+2}\left(\frac{2(p+2)}{p l} E(0)\right)^{p} \int_{\Omega}|\nabla u(t)|^{2} d x+\frac{(1-l) C_{p}^{2}}{4 \delta}(g * \nabla u)(t)
\end{align*}
$$

Also, for $K_{5}(t)-K_{6}(t)$, by using Lemma 3.1 and the Young's inequality,

$$
\begin{align*}
K_{5}(t) & \leq \delta \int_{\Omega}\left|u_{t}\right|^{2} d x-\frac{g(0) C_{p}^{2}}{4 \delta}\left(g^{\prime} * \nabla u\right)(t) \tag{11}\\
K_{6}(t) & \leq \delta \int_{\Omega}\left|u_{t}\right|^{2} d x+\frac{C_{p}^{2}}{4 \delta}(g * \nabla u)(t) \tag{12}
\end{align*}
$$

When we put equations (7)-(12) into equation (6), we have the desired result.

Theorem 3.5. Suppose that (H1)-(H3) hold and that $u_{0} \in H_{0}^{1}(\Omega)$ and $u_{1} \in$ $L^{2}(\Omega)$. If u is the solution of (1), then for each $t_{0}>0$ there exist positive constants K and λ such that the solution of (1) satisfies $E(t) \leq K e^{-\lambda \int_{t_{0}}^{t} \xi(s) d s}$, for $t \geq t_{0}$.

Proof. Since g is positive, continuous and $g(0)>0$,

$$
\begin{equation*}
\int_{0}^{t} g(s) d s \geq \int_{0}^{t_{0}} g(s) d s=: g_{0}>0, \quad t \geq t_{0} \tag{13}
\end{equation*}
$$

By the definition of $L(t)$, Lemma 2.2, Lemma 3.3-3.4 and (10),

$$
\begin{align*}
L^{\prime}(t) \leq & -\left[\varepsilon_{2}\left\{g_{0}-\delta(k+2)\right\}-\varepsilon_{1}\left\{1+\frac{4 C_{p}^{2}\left(k^{2}+1\right)}{l(3-l)}\right\}\right] \xi(t) \int_{\Omega}\left|u_{t}\right|^{2} d x \\
& -\left[\frac{\varepsilon_{1} l(3-l)}{16}-\varepsilon_{2} \delta\left\{1+2(1-l)^{2}+C^{2 p+2}\left(\frac{2(p+2) E(0)}{p l}\right)^{p}\right\}\right] \xi(t)\|\nabla u\|_{2}^{2} \\
& -\left\{\frac{1}{2}-\varepsilon_{2} \frac{g(0)}{4 \delta} C_{p}^{2} M-\frac{(3-l)(1-l)}{2 l} \varepsilon_{1}-\varepsilon_{2} K_{\delta}\right\} \xi(t)(g * \nabla u)(t) \\
& +\varepsilon_{1} \xi(t) \int_{\Omega}|u|^{p+2} d x . \tag{14}
\end{align*}
$$

We choose δ sufficiently small so that $g_{0}-\delta(k+2)>\frac{1}{2} g_{0}$ and

$$
\frac{16 \delta}{l(3-l)}\left[1+2(1-l)^{2}+C^{2 p+2}\left(\frac{2(p+2) E(0)}{p l}\right)^{p}\right]<\frac{g_{0}}{4\left(1+\frac{4 C_{p}^{2}\left(k^{2}+1\right)}{l(3-l)}\right)} .
$$

Hence, for a fixed δ, we may choose two positive constants ε_{1} and ε_{2} satisfying

$$
\begin{aligned}
& \frac{g_{0}}{4\left(1+\frac{4 C_{p}^{2}\left(k^{2}+1\right)}{l(3-l)}\right)} \varepsilon_{2}<\varepsilon_{1}<\frac{g_{0}}{2\left(1+\frac{4 C_{p}^{2}\left(k^{2}+1\right)}{l(3-l)}\right)} \varepsilon_{2} \\
& \frac{1}{2}-\frac{\varepsilon_{2} g(0) C_{p}^{2} M}{4 \delta}>\frac{(3-l)(1-l)}{2 l} \varepsilon_{1}+\varepsilon_{2} K_{\delta}
\end{aligned}
$$

Then we will make

$$
\begin{aligned}
& k_{1}=\varepsilon_{2}\left\{g_{0}-\delta(k+2)\right\}-\varepsilon_{1}\left[1+\frac{4 C_{p}^{2}\left(k^{2}+1\right)}{l(3-l)}\right]>0, \\
& k_{2}=\frac{\varepsilon_{1} l(3-l)}{16}-\varepsilon_{2} \delta\left[1+2(1-l)^{2}+C^{2 p+2}\left(\frac{2(p+2) E(0)}{p l}\right)^{p}\right]>0, \\
& k_{3}=\frac{1}{2}-\varepsilon_{2} \frac{g(0)}{4 \delta} C_{p}^{2} M-\frac{(3-l)(1-l)}{2 l} \varepsilon_{1}-\varepsilon_{2} K_{\delta}>0 .
\end{aligned}
$$

Thus, by (14) and Lemma 3.2,

$$
\begin{align*}
L^{\prime}(t) \leq & -k_{1} \xi(t) \int_{\Omega} u_{t}^{2} d x-k_{2} \xi(t)\|\nabla u(t)\|_{2}^{2}-k_{3} \xi(t)(g * \nabla u)(t)+\varepsilon_{1} \xi(t) \int_{\Omega}|u|^{p+2} d x \\
\leq & -\beta_{1} \xi(t)\left[\frac{1}{2}\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2}+\frac{1}{2}(g * \nabla u)(t)\right. \\
& \left.\quad-\frac{1}{p+2} \int_{\Omega}|u|^{p+2} d x+\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}\right] \\
& \quad-\beta_{1} \xi(t) E(t) \leq-\frac{\beta_{1}}{2} \xi(t) L(t), \tag{15}
\end{align*}
$$

for $\forall t \geq t_{0}$ and $\beta_{1}>0$. Integrating (15), we have

$$
L(t) \leq L\left(t_{0}\right) e^{-\frac{\beta_{1}}{2} \int_{t_{0}}^{t} \xi(s) d s}
$$

Then, by Lemma 3.2,

$$
E(t) \leq 2 L\left(t_{0}\right) e^{-\frac{\beta_{1}}{2} \int_{t_{0}}^{t} \xi(s) d s}=: K e^{-\lambda \int_{t_{0}}^{t} \xi(s) d s},
$$

for $t \geq t_{0}$. This completes the proof.

References

[1] S. Berrimi and S.A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differential Equations, 88 (2004), 1-10.
[2] S. Berrimi and S.A. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonl. Anal., 64 (2006), 2314-2331.
[3] M.M. Cavalcanti, V.M. Domingos Cavalcanti and J.A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differential Equations, 44 (2002), 1-14.
[4] M.M. Cavalcanti and H.P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42 no. 4 (2003), 1310-1324.
[5] W.J. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms, J. Math. Phys., 50 no. 11 (2009), 113506.
[6] W.J. Liu and J. Yu, it On decay and blow-up of the solution for a viscoelastic wave equation with boundary damping and source terms, Nonl. Anal., 74 no. 6 (2011), 21752190.
[7] S.A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source, Nonl. Anal., 69 (2008), 2589-2598.
[8] S.T. Wu, General decay and blow-up of solutions for a viscoelastic equation with a nonlinear boundary damping-source interactions, Z. Angew. Math. Phys., 63 no. 1 (2012), 65-106.

Kiyeon Shin

Department of Mathematics, Pusan National University, Pusan, 609-735, Korea E-mail address: kyshin@pusan.ac.kr

Sujin Kang
Department of Nanomaterials Engineering, Pusan National University, Pusan, 609-735, Korea
E-mail address: sjnisj@pusan.ac.kr

[^0]: Received May 27, 2016; Accepted August 27, 2016.
 2010 Mathematics Subject Classification. 35L05, 35L15, 35L70, 35B25.
 Key words and phrases. General decay, Relaxation, Viscoelastic.
 This work was supported by a 2-Year Research Grant of Pusan National University.

